
Proxy Tracing: Unbiased Reciprocal Estimation for Optimized Sampling
in BDPT
FUJIA SU∗, Peking University, China
BINGXUAN LI∗, Peking University, China
QINGYANG YIN, Peking University, China
YANCHEN ZHANG, Peking University, China
SHENG LI†, School of Computer Science, National Biomedical Imaging Center, Peking University, China

Fig. 1. Equal-time (60𝑠) comparison between unidirectional Path Tracing (PT) combined with next event estimation (NEE), Subspace-based Probabilistic
Connections Bidirectional Path Tracing (SPCBPT) [Su et al. 2022] with Light Tracing (LT) enabled, and our approach. Mean absolute percentage error (MAPE)
is used as the metric for comparison. In this Projector scene, a convex lens refracts the textured light from the projector and then projects it on the wall. Our
method can efficiently sample the specular-involved difficult paths like 𝐿𝐷𝐷𝑆𝑆𝐷𝐸 and 𝐿𝐷𝐷𝑆𝑆𝐷𝑆𝐸, leading to indistinguishable results that closely match
the reference. Our approach outperforms the other approaches significantly.

Robust light transport algorithms, particularly bidirectional path tracing

(BDPT), face significant challenges when dealing with specular or highly

glossy involved paths. BDPT constructs the full path by connecting sub-

paths traced individually from the light source and camera. However, it

remains difficult to sample by connecting vertices on specular and glossy

surfaces with narrow-lobed BSDF, as it poses severe constraints on sampling
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in the feasible direction. To address this issue, we propose a novel approach,

called proxy sampling, that enables efficient sub-path connection of these

challenging paths. When a low-contribution specular/glossy connection

occurs, we drop out the problematic neighboring vertex next to this specu-

lar/glossy vertex from the original path, then retrace an alternative sub-path

as a proxy to complement this incomplete path. This newly constructed

complete path ensures that the connection adheres to the constraint of the

narrow lobe within the BSDF of the specular/glossy surface. Unbiased re-

ciprocal estimation is the key to our method to obtain a probability density

function (PDF) reciprocal to ensure unbiased rendering. We derive the re-

ciprocal estimation method and provide an efficiency-optimized setting for

efficient sampling and connection. Our method provides a robust tool for

substituting problematic paths with favorable alternatives while ensuring

unbiasedness. We validate this approach in the probabilistic connections

BDPT for addressing specular-involved difficult paths. Experimental results

have proved the effectiveness and efficiency of our approach, showcasing

high-performance rendering capabilities across diverse settings.

CCS Concepts: • Computing methodologies→ Rendering; Ray tracing.

Additional Key Words and Phrases: Bidirectional path tracing, reciprocal

estimation, importance sampling, proxy sampling, difficult path
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1 INTRODUCTION
Bidirectional path tracing (BDPT) is a widely used rendering tech-

nique known for its robust performance in synthesizing realistic

images. BDPT employs a variety of sampling strategies to minimize

variance, with the majority relying on connection. In a connection

sampling strategy, an eye sub-path is traced from the camera and a

light sub-path is traced from the light source, respectively. These

two sub-paths are then connected to construct a full path, and this

works well when the end vertices of both sub-paths lie on diffuse

surfaces. However, when one of the end vertices lies on a specu-

lar or highly glossy surface, the connected full path tends to be

inefficient, contributing negligibly to the final image This is due to

the strict constraints required by the Bidirectional Scattering Dis-

tribution Function (BSDF) of specular materials with narrow lobe

characteristics, which are difficult to satisfy when sub-paths are

sampled independently for connections. This issue is exemplified in

Figure 2 (a), demonstrating the challenges in connection sampling

with specular surfaces.

To improve the efficiency of connection sampling in BDPT, sev-

eral algorithms based on probabilistic connections have been devel-

oped [Nabata et al. 2020; Popov et al. 2015; Su et al. 2022]. These

algorithms specifically focus on the efficient resampling of light

sub-paths given eye sub-path. However, the challenge of handling

high-frequency specular constraints remains. The sampling preci-

sion required in such cases is beyond the capabilities of these algo-

rithms. Another effective technique to reduce variance is Multiple

importance sampling (MIS) [Veach and Guibas 1995b], which com-

bines multiple sampling strategies to reduce variance. Yet, even with

MIS, managing complex paths like 𝐿𝐷𝐷𝑆𝐷𝑆𝐸
1
remains a formidable

task. In this context, we use a hyphen (-) to indicate connections

between the eye sub-path and the light sub-path. Strategies that

involve specular connections, such as 𝐿𝐷𝐷 − 𝑆𝐷𝑆𝐸, 𝐿𝐷𝐷𝑆 − 𝐷𝑆𝐸,
𝐿𝐷𝐷𝑆𝐷 − 𝑆𝐸, and 𝐿𝐷𝐷𝑆𝐷𝑆 − 𝐸, exhibit poor performance. The only

strategy left might involve tracing the whole 𝐿𝐷𝐷𝑆𝐷𝑆𝐸 path uni-

directionally from the camera. This is usually difficult, particularly

when the specular surface 𝑆 is far from the diffuse surface 𝐷 . As a

result, none of the existing sampling strategies in BDPT can sample

this path efficiently, leading to a significant increase in variance.

Our objective is to tackle challenging paths in BDPT that involve

specular or glossy materials with high-frequency BSDF. Our key

idea is to substitute the less contributive vertices in a light sub-path

with newly calculated vertices. This substitution is aimed at creating

a more contributive full path, as depicted in Figure 2. To accomplish

this, we discard the vertex adjacent to the last specular vertex (i.e.,

1
We adopt Veach’s notation [Veach 1998] to represent paths and light source. Here,

𝐿𝐷𝐷 , 𝑆, 𝐷, 𝐸 denote a vertex on the a diffusely emitting light source with finite area,

specular surface, diffuse surface, and camera, respectively. Different from Veach’s

original notation, a simple 𝐸 is used for the camera because the camera’s type is

irrelevant in our method. Also, when a surface is highly glossy (metallic/transparent

material with roughness smaller than 0.2 in Disney principled BSDF), we mark the

vertex on it as 𝑆 .

the penultimate vertex) in light sub-path, and retrace a new vertex

instead, termed the proxy vertex. This new vertex is traced based

on the direction of the eye sub-path and the BSDF of the specular

surface at the light vertex’s location. By incorporating the proxy

vertex into the full path, we ensure adherence to the specular lobe

constraints of the BSDF. This adaptation provides a highly effective

strategy for sampling these complex paths.

However, when vertices are discarded from a sub-path, it results

in an incomplete sub-path which, theoretically, could be originated

from an infinite number of initial sub-paths. This presents a sig-

nificant challenge in unbiasedly estimating its Probability Density

Function (PDF), as it requires the integration of all possible original

sub-paths.

StochasticMultiple Importance Sampling (SMIS) [West et al. 2020]

orMarginal Multiple Importance Sampling (MMIS) [West et al. 2022]

offer a solution by treating the various original sub-paths as dif-

ferent techniques within a continuous technique space and then

applying multiple importance sampling. Nevertheless, SMIS/MMIS

face considerable challenges when dealing with the complex sam-

pling distributions that are central to our proxy sampling. Therefore,

these approaches are ill-suited for tackling the unique requirements

of our methodology.

Instead, we explore an efficient solution based on reciprocal esti-

mation, a method already employed in photon mapping [Qin et al.

2015], volumetric rendering [Novák et al. 2018], specular manifold

sampling [Zeltner et al. 2020], and differential rendering [Bangaru

et al. 2020]. Existing reciprocal estimators are typically constrained

by high computational costs and variance. To overcome these lim-

itations, we introduce a novel reciprocal estimator. This new esti-

mator is designed for optimized efficiency and is distinguished by

a theoretically derived upper bound on its variance, enhancing its

applicability in complex rendering scenarios.

We highlight that our unbiased reciprocal estimator enables the

seamless institution of problematic paths with more favorable ones.

This replacement is accomplished without compromising the un-

biased nature of the Monte Carlo estimation in the path integral

framework, and importantly, it is implemented without incurring

excessive costs. Thus, our approach enables efficient sampling of

the challenging paths using the connection strategy in BDPT.

Finally, our estimator can be integrated with the probabilistic

connections BDPT algorithm [Popov et al. 2015] to further improve

efficiency. We have validated our proxy tracing approach across a

range of scene settings through comprehensive experimental com-

parisons. These comparisons were conducted on both the latest

BDPT approaches and sampling approaches, demonstrating the su-

periority of our approach with high efficiency in handling difficult

light transport scenarios.

Overall, our main contributions can be summarized in two key

aspects:

• We present a novel path sampling technique using path sub-

stitution to greatly enhance BDPT’s performance in handling

difficult paths.

• We introduce a novel reciprocal estimator. This novel estima-

tor is more efficient and practically applicable, making it a

feasible methodology for our path sampling technique.
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Fig. 2. Motivation of Proxy tracing. (a) When the end vertex of a light sub-
path lies on a glossy surface, the probability of connecting it to the eye
sub-path within the narrow BSDF lobe is very low. (b) To address this, our
method modifies the light sub-path by introducing a proxy vertex instead
of the original one, which satisfies the narrow lobe constraint on the glossy
surface, thereby enabling us to handle difficult specular-involved paths by
improving the connection probabilities.

2 RELATED WORK
Our proposed method aims to improve the efficiency of connection

sampling strategies in bidirectional path tracing (BDPT), with a

focus on difficult paths involving specular materials. While many

existing algorithms, including probabilistic connection methods

[Nabata et al. 2020; Popov et al. 2015; Su et al. 2022], have been

developed for BDPT, our approach can be easily combined with

these methods and is specifically designed for efficient sampling of

difficult paths.

Caustics, traditionally considered a challenging aspect of specular-

involved paths, are commonly rendered using the photon mapping

algorithm [Jensen and Christensen 1995]. Conventional photon

mapping methods are inherently biased. Progressive photon map-

ping iteratively evaluates the photon density to produce a biased

but consistent rendering result by reducing the kernel radius for

radiance estimation [Hachisuka and Jensen 2009; Hachisuka et al.

2008], or by finding a kernel radius that deems the radiance to be

unbiased [Lin et al. 2023, 2020]. Georgiev et al. [2012]; Hachisuka

et al. [2012] propose the VCM/UPS framework to combine BDPT

with the photon mapping method. More recently, path guiding strat-

egy has been employed to enable reliable rendering of caustics for

path tracing [Li et al. 2022].

The manifold method [Hanika et al. 2015; Zeltner et al. 2020]

also focuses on specular path handling. By iteratively solving the

appropriate position for the specular vertex in a given initial path,

thereby producing a path satisfying the specular constraint. This

method incorporates reciprocal estimation, as different initial paths

may transform into the same final path. Differently, our method

fixes the vertex on the specular surface, while the manifold method

fixes the neighboring vertices next to the specular vertex. Both

the manifold method and reciprocal estimation require multiple

iterations and tracing to get an unbiased result. In our method,

we retrace only once per connection and significantly reduce the

overhead of reciprocal estimation through light sub-path reuse. This

efficiency allows our method to integrate seamlessly with existing

BDPT methodologies. In addition, Tokuyoshi and Harada [2018,

2019] proposed the Hierarchical Russian roulette (HRR) and used

BVH for connections within the BRDF range, focusing on the SDS

path but requiring extensive light sub-path tracing. Our method,

conversely, needs fewer light sub-paths and applies to a broader

range of path types.

Path guiding algorithms [Jensen 1996; Lafortune and Willems

1999; Rath et al. 2020] can improve the performance of unidirec-

tional path tracing to better handle the difficult paths during light

transport. Path guiding uses the incident radiance distribution to

guide path tracing and builds models such as spatio-directional trees

[Müller et al. 2017] or Gaussian mixture model [Vorba et al. 2014] to

represent the incident radiance field. Unidirectional path tracing is

efficient when the diffuse surface is close to the glossy surface but

less so when the surfaces are far apart. Our algorithm, an enhance-

ment of the connection algorithm, performs well, especially when

the diffuse surface is distant from the glossy surface. Therefore, our

method can be easily incorporated into path-guiding algorithms to

provide efficient and robust sampling for difficult paths.

Reciprocal estimation is essential for our method to compute the

PDF of proxy tracing. The method to estimate reciprocal unbiasedly

was first proposed by Booth [2007] and was introduced to graphics

by Qin et al. [2015] to implement unbiased photon gathering. Zeltner

et al. [2020] also utilized this method in specular manifold sampling.

Blanchet et al. [2015] provided the approach to estimate 𝑔(
∫
𝑥𝑑𝑥)

unbiasedly by Taylor expansion when function 𝑔 is nonlinear and

smooth. Reciprocal estimation is a special case of the nonlinear

smooth function 𝑔. Zackary et al. [2022] applied Taylor expansion to

evaluate the bias of the biased estimator and transform this estimator

into an unbiased one. We adopt the reciprocal estimation framework

of the previous method and propose an optimized setting for the

reciprocal estimation. Russian roulette and splitting (RRS) method

is involved in the reciprocal estimation. Rath et al. [2022a] propose

the efficiency-optimized setting for the RRS process in path tracing,

which inspires us to explore the optimized RRS function in reciprocal

estimation.

Traditional MIS methods can only combine the contribution of

a certain number of sampling techniques. Continuous MIS (CMIS)

[West et al. 2020] extends MIS to an uncountable infinite number of

sampling strategies. CMIS utilizes an optimally balanced heuristic

to integrate a continuous spectrum of techniques, with its practi-

cal counterpart, Stochastic MIS (SMIS), being applicable in most

scenes. Marginal MIS (MMIS) [West et al. 2022] further extends this

concept to multiple technique spaces, allowing for integration with

classical multi-sample MIS estimators. Both SMIS and MMIS can be

used to solve our problem, serving as an alternative for reciprocal

estimation.

Probabilistic connections methods [Nabata et al. 2020; Popov

et al. 2015; Su et al. 2022] were developed for resampling the light

sub-path based on the information of the eye sub-path. Although

these resampling strategies of the light sub-path may not be suf-

ficient to satisfy specular constraint, they can be combined with

our method to cover the sampling of various difficult paths. By

connecting sub-paths and generating valid specular paths, we can

overcome difficulties associated with sampling specular materials,

as illustrated in Figure 2(b). We also adopt the idea of light sub-path
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reuse in the probabilistic connections method to reduce the over-

head of reciprocal estimation; as well as the idea of selecting the

appropriate light sub-path for connection to ensure the best possible

efficiency and rendering quality.

3 PRELIMINARIES

3.1 Path Integral and Bidirectional Path Tracing
From the path integral formulation [Veach and Guibas 1995a], the

pixel measurement 𝐼 is as:

𝐼 =

∫
Ω
𝑓 (𝑥)𝑑𝜇 (𝑥) , (1)

where Ω is the path space, and 𝑥 = 𝑥0𝑥1 ...𝑥𝑘 is a path of length

𝑘 ≥ 1, 𝑥0 and 𝑥𝑘 are on a light source and the camera, respectively.

𝑑𝜇 (𝑥) = 𝑑𝐴(𝑥0) ...𝑑𝐴(𝑥𝑘 ) is the differential area product, and 𝑓 is

the measurement contribution function as:

𝑓 (𝑥) = 𝐿𝑒 (𝑥0, 𝑥1)𝑇 (𝑥)𝑊𝑒 (𝑥𝑘−1
, 𝑥𝑘 ) ,

𝑇 (𝑥) = 𝐺𝑉 (𝑥0, 𝑥1)
[
𝑘−1∏
𝑖=1

𝜌 (𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1)𝐺𝑉 (𝑥𝑖 , 𝑥𝑖+1)
]
,

where 𝐿𝑒 (𝑥0, 𝑥1) is the radiance emitted 𝑥0 → 𝑥1,𝑊𝑒 is the pixel

sensitivity, 𝜌 is the bidirectional scattering distribution function

(BSDF), and 𝐺𝑉 is the geometry term including the visibility.

BDPT estimates Equation 1 by Monte Carlo integration. It traces

the light sub-path 𝑦 from the light source in PDF 𝑝 (𝑦) and eye

sub-path 𝑧 from the camera in PDF 𝑝 (𝑧), then connects these two

sub-paths to sample the full path 𝑥 = 𝑦𝑧. The PDF for sampling 𝑥

is 𝑝 (𝑥) = 𝑝 (𝑦)𝑝 (𝑧). The contribution of the full path 𝑓 (𝑥) can be

divided into three parts 𝑓𝑧 (𝑧) 𝑓𝑦𝑧 (𝑦, 𝑧) 𝑓𝑦 (𝑦) as [Popov et al. 2015]:

𝑓𝑦 (𝑦) = 𝐿𝑒 (𝑦0, 𝑦1)𝐺𝑉 (𝑦0, 𝑦1)
𝑠−2∏
𝑖=1

𝜌 (𝑦𝑖−1, 𝑦𝑖 , 𝑦𝑖+1)𝐺𝑉 (𝑦𝑖 , 𝑦𝑖+1),

𝑓𝑦𝑧 (𝑦, 𝑧) = 𝜌 (𝑦𝑠−2, 𝑦𝑠−1, 𝑧𝑡−1)𝐺𝑉 (𝑦𝑠−1, 𝑧𝑡−1)𝜌 (𝑦𝑠−1, 𝑧𝑡−1, 𝑧𝑡−2),

𝑓𝑧 (𝑧) =𝑊𝑒 (𝑧0, 𝑧1)𝐺𝑉 (𝑧0, 𝑧1)
𝑡−2∏
𝑖=1

𝜌 (𝑧𝑖−1, 𝑧𝑖 , 𝑧𝑖+1)𝐺𝑉 (𝑧𝑖 , 𝑧𝑖+1) .

Here, 𝑠 is the vertices number of the light sub-path, and 𝑡 is the

vertices number of the eye sub-path.

The PDF for a sub-path to be traced 𝑝 (𝑦) can be written as the

PDF product of its vertices as

𝑝 (𝑦) = 𝑝 (𝑦0)𝑝 (𝑦1) ....𝑝 (𝑦𝑠−1) (2)

and the PDF for a vertex 𝑝 (𝑦𝑖 ) to be traced usually depends on its

precedent vertex 𝑝 (𝑦𝑖−1) and the incident direction 𝑦𝑖−2 → 𝑦𝑖−1 to

trace from BSDF at 𝑦𝑖−1

𝑝 (𝑦𝑖 ) = 𝑝 (𝑦𝑖−2 → 𝑦𝑖−1 → 𝑦𝑖 ) = 𝑝 (𝑦𝑖 |𝑦𝑖−1, 𝑦𝑖−2 → 𝑦𝑖−1) . (3)

3.2 Probabilistic Connections
The probabilistic connections method, an enhancement of BDPT,

boosts sub-path connection efficiency [Popov et al. 2015]. It begins

each iteration by caching a set of light sub-paths. These are then

resampled when connecting with the eye sub-paths, improving

efficiency by reusing the cached light sub-paths for all eye sub-

paths and selectively providing higher sampling density to paths

with greater contributions.

SPCBPT introduces the concept of subspace within path space to

implement efficient probabilistic connections [Su et al. 2022]. Sub-

paths are classified into subspaces based on position, normal, and

incident direction, ensuring low discrepancy and shared sampling

probabilities within each subspace. Themethod employs a two-stage

process for light sub-path selection: first, selecting a light subspace

based on the eye subspace, followed by resampling the light sub-path

from this chosen subspace. In probabilistic algorithms like SPCBPT,

𝑝 (𝑦) and 𝑝 (𝑧) can easily approximate the shape of 𝑓𝑦 (𝑦) and 𝑓𝑧 (𝑧)
by tracing from BSDF. In most cases, the probabilistic connections

method can provide good sampling for 𝑓𝑦𝑧 . However, when 𝑦𝑠−1

or 𝑥𝑧−1 is on specular surface, the high variance of 𝑓𝑦𝑧 (𝑦, 𝑧) will
make the Monte Carlo estimator 𝐼 = 𝑓 /𝑝 =

𝑓𝑦 (𝑦)
𝑝 (𝑦)

𝑓𝑧 (𝑧 )
𝑝 (𝑧 ) 𝑓𝑦𝑧 (𝑦, 𝑧)

less efficient. Even the probabilistic connection method can hardly

find the appropriate light sub-path that satisfies the high-frequency

specular constraint.

Although multiple importance sampling (MIS) can leverage mul-

tiple sampling strategies in BDPT and select an appropriate strategy

for the specular material [Kondapaneni et al. 2019; West et al. 2020],

the fundamental challenges of path sampling and connection are

still not fully addressed. Sampling paths involving specular mate-

rials, such as 𝐿𝐷𝐷 (𝑆 |𝐷)∗𝑆𝐷𝑆∗𝐸 remains difficult. In this type of

path, all the possible sampling strategies rely on the eye sub-path to

trace from its first diffuse surface to the next specular surface and

the PDF for the 𝐷 → 𝑆 bounce can be very small. Consequently,

it is challenging for BDPT to sample such path effectively, which

motivates the development of our proposed method.

Constructing a path with specular connections, like 𝐿𝐷𝐷 (𝑆 |𝐷)∗𝑆-
𝐷𝑆∗𝐸, often fails to satisfy specular constraint, thus yielding neg-

ligible contributions to the final image. To address this issue, we

propose retracing the neighbor of the specular vertex that can sat-

isfy specular constraint, converting the invalid path into valuable

ones with high contribution. In section 4, we will introduce our

methodology of proxy sampling. This technique involves discard-

ing the low-contribution segment of the path and retracing the

complementary proxy path to enhance sampling performance.

3.3 Continuous, Stochastic and Marginal MIS
Multiple Importance Sampling (MIS) [Veach and Guibas 1995b] is

a Monte Carlo integration framework for combining various sam-

pling techniques, yet traditionally limited to countable sets. Contin-

uous MIS (CMIS) [West et al. 2020] extends this to an uncountable

technique space T , broadening its applicability. The one-sample

estimator in CMIS is

<𝐼>CMIS =
𝑤 (𝑡, 𝑥) 𝑓 (𝑥)
𝑝 (𝑡)𝑝 (𝑥 |𝑡) , (4)

where weighting function 𝑤 : T × X → R with the property∫
T 𝑤 (𝑡, 𝑥)d𝑡 = 1. For the estimator to be unbiased, the weighting

ACM Trans. Graph., Vol. 43, No. 4, Article 97. Publication date: July 2024.



Proxy Tracing: Unbiased Reciprocal Estimation for Optimized Sampling in BDPT • 97:5

Low 
contribution

 
 

fixed  vertex 
problematic
vertex

(a)

PDF 
integral

 
 

Incomplete
path 

 fixed  vertex
possibly 
problematic
vertex

(b)

Incomplete
path 

High
contribution

 
 

Conditional
sampling

fixed  vertex
  proxy  vertex

(c)

Fig. 3. Semantic illustration of proxy sampling. (a) An original path, sampled from the initial distribution, often includes poorly distributed vertices, reducing
the overall contribution of the full path; (b) our approach discards the problematic vertices, resulting in an incomplete path. The PDF for an incomplete path
requires integrating over all potential problematic paths that could lead to the identical incomplete path; (c) proxy vertices are then traced to merge with
the incomplete path and construct a new path. The data from the incomplete sub-path assists in tracing these proxy vertices, providing a more favorable
conditional distribution for constructing a full path with a higher contribution.

function𝑤 must satisfy∫
T
𝑤 (𝑡, 𝑥)𝑑𝑡 = 1 whenever 𝑓 (𝑥) ≠ 0, (5a)

𝑤 (𝑡, 𝑥) = 0 whenever 𝑝 (𝑡, 𝑥) = 0. (5b)

A variance-optimal weighting function, as derived in [West et al.

2020], is

𝑤̃ (𝑡, 𝑥) = 𝑝 (𝑡)𝑝 (𝑥 |𝑡)∫
T 𝑝 (𝑡 ′, 𝑥)d𝑡 ′

=
𝑝 (𝑡, 𝑥)
𝑝 (𝑥) , (6)

apply this optimal weighting function in Equation 4, we get the

balance-heuristic CMIS estimator

<𝐼>CMIS =
𝑤̃ (𝑡, 𝑥) 𝑓 (𝑥)
𝑝 (𝑡, 𝑥) =

𝑓 (𝑥)
𝑝 (𝑥) . (7)

Evaluating the balance-heuristic CMIS estimator requires evalu-

ating the marginal PDF integral 𝑝 (𝑥) in its denominator. Typically,

𝑝 (𝑥) is not readily available in a closed form. Our solution is to create

an unbiased estimator for the reciprocal, 1/𝑝 (𝑥). [West et al. 2020]

circumvented reciprocal estimation by proposing Stochastic MIS

(SMIS), which can be seen as an approximation for balance-heuristic

CMIS.

In SMIS, 𝑛 independent sample pairs (𝑡1, 𝑥1), ..., (𝑡𝑛, 𝑥𝑛) are sam-

pled. Then the SMIS estimator is constructed as

<𝐼>SMIS =

𝑛∑︁
𝑖=1

¤𝑤 (𝑡𝑖 , 𝑥𝑖 ) 𝑓 (𝑥𝑖 )
𝑝 (𝑥𝑖 |𝑡𝑖 )

=

𝑛∑︁
𝑖=1

𝑓 (𝑥𝑖 )∑𝑛
𝑗=1

𝑝 (𝑥𝑖 |𝑡 𝑗 )
, (8)

where ¤𝑤 (𝑡𝑖 , 𝑥) = 𝑝 (𝑥 |𝑡𝑖 )∑𝑛
𝑗=1

𝑝 (𝑥 |𝑡 𝑗 ) . SMIS effectively samples techniques

from the space T and then applying MIS. SMIS exhibits bias when

there’s a positive probability that the combined sampling distribu-

tion cannot cover 𝑓 (𝑥)’s support. Therefore, it requires nearly every
technique in T being unbiased, i.e. 𝑝 (𝑥 |𝑡) > 0 whenever 𝑓 (𝑥) > 0,

if the techniques are chosen in a stochastic way. Further challenges

arise when each technique only provide efficient sampling for small

range of 𝑥 . In that case, SMIS requires an large number of techniques

and appropriate importance sampling in T , both can be difficult to

implement. The computational cost, scaling as 𝑂 (𝑛2), further limits

the number of combinable techniques. We conclude these factors as

the main limitations of SMIS.

Marginal MIS (MMIS) [West et al. 2022] generalized SMIS to

multiple technique spaces. While MMIS enhances the robustness of

SMIS by incorporating multiple technique spaces, it still inherits the

limitations of SMIS. If none of the technique spaces within MMIS

are capable of efficiently sampling 𝑓 (𝑥), then the MMIS estimator

can not achieve high efficiency, as it just combines these spaces.

These identified limitations of SMIS/MMIS underpin our decision

to favor reciprocal estimation in our approach. We will provide fur-

ther illustration in subsection 4.3, where we conduct a comparison

between SMIS/MMIS and our reciprocal estimation.

4 OUR METHODOLOGY
When sampling a path 𝑥 from a distribution 𝑝 (𝑥), certain vertices in

𝑥 may contribute to high variance due to poor distribution. To miti-

gate this, we employ a dropout-and-complement scheme, removing

these problematic vertices and retracing new ones as substitutes.

The retracing process is designed to be independent of the orig-

inal problematic vertices while leveraging information from the

fixed vertices in the original path. In this section, we formulate this

dropout-and-complement scheme and show that its core principle

in a reciprocal estimation of PDF for unbiasedness, and is effectively

addressed by our proposed estimator eventually.

4.1 Proxy Sampling Formulation
Formally, we use 𝑔 to denote the candidate vertices that can be

replaced in path 𝑥 . ¯ℎ to denote the incomplete path that contains

fixed vertices which will be used in the retracing. We use function

𝐷 (𝑥, 𝑔) to denote the operation of dropping out problematic vertices

in 𝑔 from complete 𝑥 , obtaining an incomplete path
¯ℎ:

¯ℎ = 𝐷 (𝑥, 𝑔) . (9)

We also define the repair operation 𝑅( ¯ℎ,𝑔) to fill in this incomplete

path
¯ℎ with proxy vertices 𝑔 and get the complete path 𝑥 :

𝑥 = 𝑅( ¯ℎ,𝑔). (10)

We illustrate the key aspects of proxy sampling in Figure 3. We

first apply dropout operation𝐷 (𝑥𝑜 , 𝑔𝑜 ) to obtain an incomplete path

¯ℎ from original path 𝑥𝑜 (see Figure 3(a)). Next, we retrace proxy
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vertices 𝑔 from distribution 𝑝 (𝑔| ¯ℎ) and generate the final path by

applying the repair operation 𝑥 = 𝑅( ¯ℎ,𝑔) (see Figure 3(c)). Hereby,
The PDF for sampling the final path 𝑝𝑑 (𝑥) is given by

𝑝𝑑 (𝑥) = 𝑝 ( ¯ℎ)𝑝 (𝑔| ¯ℎ), (11)

where 𝑝 ( ¯ℎ) is used instead of 𝑝 (𝑥𝑜 ) to compute the PDF. As shown

in Figure 3(b), an incomplete path
¯ℎ can result from different original

paths with different alternative vertices 𝑔, so the PDF of incomplete

path
¯ℎ should be computed as

𝑝 ( ¯ℎ) =
∫
𝐴𝑢
𝑝 [𝑅( ¯ℎ,𝑔)]𝑑𝜇 (𝑔), (12)

where 𝐴 is the surfaces of a scene and 𝑢 is the vertex count (also

path length) of 𝑔.

Proxy sampling can provide better performance than the original

distribution 𝑝 (𝑥) when the conditional distribution 𝑝 (𝑔| ¯ℎ) is effi-

cient. For instance, when a specular vertex and one of its neighbor

vertices are located within
¯ℎ, the conditional distribution for sam-

pling the other neighbor vertex in 𝑔 is efficient by sampling from

the specular BSDF.

However, computing the PDF 𝑝 ( ¯ℎ) for sampling an incomplete

path, as given in Equation 12, requires an integral that cannot be

computed analytically in most cases. We can get an unbiased estima-

tor 𝑝 ( ¯ℎ) of 𝑝 ( ¯ℎ) by applying the Monte Carlo method to Equation 12.

Unfortunately,
1

𝑝̃ ( ¯ℎ) is not an unbiased estimator for
1

𝑝 ( ¯ℎ) [Chandler

1987]. This means the path integral estimator 𝑓 (𝑥)/[𝑝 ( ¯ℎ)𝑝 (𝑔 | ¯ℎ)] is
biased due to the presence of 𝑝 ( ¯ℎ) in the denominator. Therefore,

we need an unbiased reciprocal estimation for
1

𝑝 ( ¯ℎ) in the proxy

sampling. By deriving a reciprocal estimation formulation for the

path integral, we can effectively estimate the PDF of the incomplete

paths without introducing bias.

4.2 Our Reciprocal Estimation
In the reciprocal estimation, we adopt the Taylor expansion frame-

work of Blanchet et al. [2015]. Without loss of generality, we use

𝛽 to denote the integral of a function 𝛽 =
∫
R 𝑓 (𝑥)𝑑𝑥 in an integral

domain R. We use a supporting distribution 𝑞 to sample 𝑥 from R.
Our objective is to get an unbiased estimation for the reciprocal of

𝛽 as

𝛼 =
1

𝛽
=

1∫
R 𝑓 (𝑥)𝑑𝑥

.

We first compute the difference between 𝛽 and a constant 𝐵 as

𝐴 = 𝐵 − 𝛽 , then we have

𝛼 =
1

𝐵 −𝐴 .

A Taylor expansion of
1

𝐵−𝐴 at 𝐴 = 0 yields

1

𝐵 −𝐴 =
1

𝐵
+ 𝐴

𝐵2
+ 𝐴

2

𝐵3
... =

1

𝐵

∑︁
𝑛=0

𝐴𝑛

𝐵𝑛
. (13)

The integral formulation of Equation 13 is

𝛼 =
1

𝐵

∑︁
𝑛=0

𝐼𝑛 =
1

𝐵

∑︁
𝑛=0

∫
R𝑛

∏
𝑖

𝐵 − 𝑓 (𝑥𝑖 )
𝐵

𝑑𝜇 (𝑥), (14)

where 𝐼𝑛 = 𝐴𝑛

𝐵𝑛 and 𝑥 is constructed by 𝑁 samples from domain R.

The product of 𝑛 random variables with
𝐴
𝐵
-expectation is an

unbiased estimation for
𝐴𝑛

𝐵𝑛 . Therefore, we can estimate 𝐼𝑛 without

bias by generating 𝑛 independent samples from the supporting

distribution 𝑞 and building estimator 𝐼𝑛 as

𝐼𝑛 =

𝑛∏
𝑖

[
1 − 𝑓 (𝑥𝑖 )

𝐵𝑞(𝑥𝑖 )

]
. (15)

Here, 𝐸 [1 − 𝑓 (𝑥𝑖 )
𝐵𝑞 (𝑥𝑖 ) ] =

𝐴
𝐵
, so 𝐼𝑛 is a unbiased estimator for 𝐼𝑛 = 𝐴𝑛

𝐵𝑛 .

We use 1− 𝑓 (𝑥𝑖 )
𝐵𝑞 (𝑥𝑖 ) instead of

𝐵−𝑓 (𝑥𝑖 )
𝐵𝑞 (𝑥𝑖 ) to construct the

𝐴
𝐵
-expectation

random variable because the optimal supporting distribution 𝑞 for

the former is 𝑞 ∝ 𝑓 (𝑥) while the latter is 𝑞 ∝ 1 − 𝑓 (𝑥), which is

typically more challenging and unconventional to construct in most

scenarios.

We can make an unbiased estimation to 𝛼 by combining infinite

𝐼𝑛 as

𝐼 =
1

𝐵

∑︁
𝑛

𝐼𝑛 . (16)

Blanchet et al. [2015] proposes two solutions to address the infi-

nite summation in Equation 16. One approach constructs a single-

term estimator: Sample an integer 𝑁 from Z with a probability

mass function (PMF), 𝑝𝑁 , generate 𝑁 samples to estimate 𝐼𝑁 , and

use 𝐼𝑁 /[𝐵𝑝𝑁 ] as the unbiased estimator for 𝐼 . The other also sam-

ples 𝑁 and generates 𝑁 samples, but instead of estimating 𝐼𝑁 , it

uses the 𝑁 samples to estimate any 𝐼𝑁 ′ for 𝑁
′ ≤ 𝑁 by computing

the prefix product. The resulting estimator for 𝐼 is then given by∑
𝑖≤𝑁 𝐼𝑖/[𝐵𝑝 ( 𝑗 ≥ 𝑖)]. Both solutions rely on appropriate distribu-

tion to sample integer 𝑁 . Although Blanchet et al. [2015] intro-

duced a cost-minimized distribution, applying this distribution to

our proxy tracing method still presents challenges. This arises from

several non-closed terms required by the distribution, such as the

root of a complex non-linear equation, which are impractical to

solve for our estimation. Consequently, we have chosen to devi-

ate from their methodology and instead focus on addressing the

reciprocal estimation problem with a simpler and more practical

solution.

Since Equation 14 is close to the path integral formulation in

Equation 1, it can be estimated in a Russian Roulette and Splitting

(RRS) manner, similar to unidirectional path tracing. This involves

constructing 𝑥 from the first sample 𝑥0 and controlling the sampling

using an RRS function 𝑟 (𝑥). When a prefix 𝑥 is sampled and 𝑅(𝑥) ≤
1, we finish the sampling in probability 1−𝑟 (𝑥); otherwise, continue
the sampling. If 𝑟 (𝑥) ≥ 1, we split ⌊𝑟 (𝑥)⌋ +1 samplings on the prefix

𝑥 in probability 𝑟 (𝑥) − ⌊𝑟 (𝑥)⌋; otherwise, split ⌊𝑟 (𝑥)⌋ samplings.

The estimator for a path of 𝑘 vertices 𝑥 is

𝐼 (𝑥) =

∏
0≤𝑖<𝑘

[
1 − 𝑓 (𝑥𝑖 )

𝐵𝑞 (𝑥𝑖 )

]∏
1≤ 𝑗<𝑘 𝑟 (𝑥 𝑗 )

, (17)

where 𝑥 𝑗 is the 𝑗-vertex prefix of 𝑥 . 𝐼 =
[
1 +∑ 𝐼 (𝑥)

]
/𝐵 provides

unbiased estimation to 𝛼 , where the extra 1

𝐵
comes from 𝐼0.

We propose an RRS function for a 𝑥 of 𝑘 vertices as

𝑟 (𝑥) = |1 − 𝑓 (𝑥𝑘−1
)

𝐵𝑞(𝑥𝑘−1
) |. (18)
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Fig. 4. Illustration of the sampling distribution 𝑝 (𝑡, 𝑥 ) alongside the target
function 𝑓 (𝑥 ) . Parameters 𝛼 and 𝛽 in the graph correspond to the PDF in
this region. Different 𝑡 associates with different sampling techniques 𝑝 (𝑥 |𝑡 ) .
SMIS works by first sampling 𝑛 techniques 𝑡1, 𝑡2, ..., 𝑡𝑛 , then performing
MIS between 𝑝 (𝑥 |𝑡1 ), 𝑝 (𝑥 |𝑡2 ), ..., 𝑝 (𝑥 |𝑡𝑛 ) .

We prove that the proposal RRS function is sub-optimal, i.e., optimal

in some assumptions. We provide a detailed explanation of our

estimator with analysis and proof in Appendix A. With our proposal

RRS function, estimator 𝐼 (𝑥) can be transformed into

𝐼 (𝑥) =
[
1 − 𝑓 (𝑥𝑘−1

)
𝐵𝑞(𝑥𝑘−1

)

]
𝑆 (𝑥), (19)

where 𝑆 (𝑥) = ∏
0≤ 𝑗<𝑘−1

𝑠𝑔𝑛[1− 𝑓 (𝑥 𝑗 )
𝐵𝑞 (𝑥 𝑗 ) ] is used to denote the sign

product of all the prefix vertices of 𝑥 .

In Appendix F, we also discuss the optimal setting of 𝐵. With our

proposed RRS function, we construct a sign estimator 𝐼𝑠𝑖𝑔𝑛 (𝑥) =
𝑆 (𝑥) which can also be used for reciprocal estimation but produces

higher variance than 𝐼 (𝑥). We provide the variance upper bound as

well as the work-minimized B setting for the sign estimator. The

recommended 𝐵 setting is 𝐵 =𝑚𝑎𝑥 ( 𝑓 (𝑥 )
𝑞 (𝑥 ) ), i.e., the upper bound of

𝑓 (𝑥 )
𝑞 (𝑥 ) . We use the upper bound 𝐵 setting for our estimator. Because

𝑉 (𝐼 ) ≤ 𝑉 (𝐼𝑠𝑖𝑔𝑛), we highlight that using this 𝐵 can minimize the

upper bound of reciprocal estimation.

In contrast to Blanchet et al. [2015], our RRS method does not

directly sample 𝑁 . Instead, it determines the number of samples

by continuous application of RRS on current prefix samples. The

probability of sampling 𝑥 is decided by both 𝑥 ’s length and the

prefix’s importance (production of 𝑟 (𝑥𝑖 )). Note that Booth [2007]

uses a similar Russian roulette method in reciprocal estimation

(splitting not involved). However, the RR function used is 𝑟 (𝑥) =
𝑚𝑖𝑛(1, 1

𝑟

∏
𝑖<𝑘 |1 −

𝑓 (𝑥𝑖 )
𝐵𝑞 (𝑥𝑖 ) |) where 𝑟 is a hyperparameter that must

be manually set. In contrast, our Russian roulette method uses a

sub-optimal RRS function that is supported by rigious variance anal-

ysis, without any manually-set parameters required. Additionally,

both our method and Booth’s method can be adapted to the geo-

metric distribution when dealing with binary functions 𝑓 (𝑥), as
demonstrated by Qin et al. [2015].

Table 1. Results for 𝛼 = 0.1 and 𝛽 = 4.6. We compared the variances of
SMIS-𝑛 and our reciprocal estimator under conditions of equal cost. SMIS16
shows the best performance within this specific setting.

SMIS2 SMIS4 SMIS8 SMIS16 OURS

𝑓𝐴 22.0 15.2 7.5 2.1 4.3

𝑓𝐵 203.5 142.4 71.6 23.8 51.7

Table 2. Results for 𝛼 = 0.01 and 𝛽 = 4.96. Our reciprocal estimator exhib-
ited superior efficiency. Note that SMIS-𝑛’s variance increases dramatically
compared to Table 1 while our estimator maintains nearly consistent vari-
ance across tests, showing our method’s robustness in handling this type of
distribution.

SMIS2 SMIS4 SMIS8 SMIS16 OURS

𝑓𝐴 240.2 173.6 91.0 21.6 4.5
𝑓𝐵 2344.8 1658.4 874.9 197.1 54.0

4.3 Comparative Analysis of SMIS/MMIS and our
Reciprocal Estimation

In this section, we will demonstrate the conditions under which our

reciprocal estimation method outperforms SMIS/MMIS, and explain

our preference for the former. Our analysis is structured in two

parts: Initially, we will conduct unit experiments to compare the

performance of each method directly. Subsequently, we will explore

complex scenarios where SMIS/MMIS exhibit limitations, thereby

emphasizing the strengths of our proxy sampling approach.

4.3.1 Unit Test. Our unit test is depicted in Figure 4, where we

employ a sampling distribution 𝑝 (𝑡, 𝑥) characterized by parameters

𝛼 and 𝛽 . These parameters are adjustable to estimate 𝑓 (𝑥). It is
important to note that only one parameter can be varied at a time,

as they must satisfy the condition 0.8𝛼 + 0.2𝛽 = 1 to ensure the

validity of the distribution.

Table 1 and Table 2 show the variance of SMIS-𝑛 and our recip-

rocal estimator under conditions of equal cost. In Table 1 where

𝛼 = 0.1, SMIS16 performs best. However, as 𝛼 is reduced to 0.01

in Table 2, our reciprocal estimator exhibited superior efficiency.

The variance of SMIS-𝑛 increases dramatically as 𝛼 → 0. This phe-

nomenon can be attributed to the characteristics of the distribution

𝑝 (𝑡, 𝑥). As 𝛼 → 0, 𝑝 (𝑥 |𝑡) associate with different 𝑡 targets differ-

ent segments of 𝑓 (𝑥). Notably, each individual sampling technique

𝑝 (𝑡, 𝑥) is characterized by significant variance, and the combination

of a limited subset fails to mitigate this issue. Only by combining

all five distinct sampling methods (see Figure 4) can SMIS get com-

prehensive coverage of 𝑓 (𝑥)’s support.
When 𝛼 = 0, this situation falls outside SMIS’s scope, and SMIS

will produce bias. This bias arises because a combination of dif-

ferent sampling techniques does not consistently cover the entire

support of 𝑓 (𝑥). While increasing the number of techniques used in

SMIS may reduce this bias, a certain level of positive bias remains

inevitable as long as the number of techniques is finite.

Although MMIS was not included in the direct experimental

comparison, it is crucial to recognize that MMIS shares the same
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(a) 𝐿𝐷𝐷𝑆𝑆 path

h h

h h

(b) Visibility discrepancy

Fig. 5. Two failure cases in SMIS. (a) In handling this 𝐿𝐷𝐷𝑆𝑆 type light
sub-path, our proxy sampling designates the 𝐿𝐷𝐷𝑆 as the dropout vertices,
represented by 𝑔𝑜 , while the residual 𝑆 forms the incomplete path ¯ℎ. Within
SMIS framework, 𝑔𝑜 is associated with technique 𝑡 , and 𝑝 ( ¯ℎ |𝑡 ) is propor-
tional to the PDF that traces from 𝑔𝑜 ’s last vertex to the first vertex (denote
as ℎ without the bar) following 𝑔𝑜 in ¯ℎ. The probabilities 𝑝 (ℎ2 |𝑡1 ) and
𝑝 (ℎ1 |𝑡2 ) , signified by yellow dashed lines, are nearly zero. (b) In scenario
where visibility varies significantly, different techniques in SMIS primarily
sample separate regions of 𝑓 (𝑥 ) . This leads to an inherent bias in SMIS
because there is a positive probability that the combined sampling distribu-
tion cannot cover 𝑓 (𝑥 )’s support.

limitations as SMIS. This similarity arises because MMIS operates

by integrating multiple SMIS strategies.

4.3.2 SMIS/MMIS in Difficult Situations. Our proxy sampling is

designed to handle specular-involved complex situations, while

SMIS/MMIS will face challenges in such contexts. Recall Sec. 4.1, we

first trace the original path 𝑥𝑜 from the original sampling method,

and "dropout" vertices 𝑔𝑜 from the original path 𝑥𝑜 to get the incom-

plete path
¯ℎ, and complement

¯ℎ with newly traced proxy vertices 𝑔.

The "dropout" vertices 𝑔𝑜 is actually the technique in CMIS context,

since it determines the sampling of
¯ℎ. Also, 𝐴𝑢 is the technique

space. In the section, we use notations 𝑡 = 𝑔𝑜 and T = 𝐴𝑢 to fit

in with the CMIS context. The balance-heuristic CMIS estimator is

then constructed as

<𝐼>CMIS =
𝑓 (𝑥)
𝑝 (𝑥) =

𝑓 (𝑥)
𝑝 ( ¯ℎ)𝑝 (𝑥 | ¯ℎ)

=
1∫

T 𝑝 ( ¯ℎ, 𝑡)𝑑𝑡
· 𝑓 (𝑥)
𝑝 (𝑥 | ¯ℎ)

. (20)

In SMIS, 𝑛 independent pairs of techniques and corresponding sam-

ples, denoted as (𝑡1, 𝑥1), . . . , (𝑡𝑛, 𝑥𝑛), are drawn. The SMIS estimator

is constructed as

<𝐼>SMIS =

𝑛∑︁
𝑖=1

1∑𝑛
𝑗=1

𝑝 ( ¯ℎ𝑖 |𝑡 𝑗 )
· 𝑓 (𝑥𝑖 )
𝑝 (𝑥𝑖 | ¯ℎ𝑖 )

. (21)

Here, 𝑝 (𝑥𝑖 | ¯ℎ𝑖 ) = 𝑝 (𝑔𝑖 | ¯ℎ𝑖 ) is the retracing PDF; 𝑝 ( ¯ℎ |𝑡) refers to the

PDF for all the vertices in
¯ℎ to be traced in the original sampling

method when the vertices in 𝑡 given. Note that computing 𝑝 ( ¯ℎ𝑖 |𝑡 𝑗 )
requires a visibility test between

¯ℎ𝑖 and 𝑡 𝑗 when 𝑖 ≠ 𝑗 , as illustrated

in Figure 5. This requirement results in a quadratic increase in the

cost of visibility tests within SMIS. Consequently, utilizing smaller

numbers of techniques is generally more practical in proxy tracing.

We present two scenarios illustrating the lesser effectiveness

of SMIS. The first involves multiple specular vertices following a

light vertex, as depicted in Figure 5 (a). Constraints in reflective or

refractive directions result in 𝑝 (ℎ2 |𝑡1) and 𝑝 (ℎ1 |𝑡2) being almost

zero. This associates with Figure 4 when 𝛼 → 0, where different

techniques predominantly sample different regions of 𝑓 (𝑥). In cases

where the 𝑆 vertex is highly glossy, SMIS faces the challenge of

requiring numerous techniques to minimize variance. Conversely,

if the 𝑆 vertex is purely specular, it leads to bias in SMIS. This is

observed in the Projector scene shown in our experiments.

Another case is when different lights do not share the same visi-

bility, as shown in Figure 5 (b). In scenes with multiple light sources

possessing complex visibilities, SMIS tends to exhibit obvious bias.

This corresponds to SMIS’s first limitation andwill be further demon-

strated in the scene Hallway. While MMIS can eliminate bias by

combining SMIS with unbiased sampling techniques like unidirec-

tional path tracing, the inherent high variance of SMIS makes the

overall estimator inefficient.

The analysis above leads us to prefer reciprocal estimation over

SMIS/MMIS for our method, with experimental findings detailed

later. We also highlight that our reciprocal estimator can be inte-

grated into the CMIS framework, serving as a potent SMIS alter-

native. The CMIS estimator (Equation 7) is effectively computed

using reciprocal estimation, which shows superior performance in

certain scenarios. This is exemplified in our application to photon

plane sampling [Deng et al. 2019], a method formerly using SMIS

[West et al. 2020]. Detailed results in Sec. 6.7 highlight our method’s

advantages.

5 PROXY TRACING FOR BDPT
With the proxy sampling method and reciprocal estimation dis-

cussed above, we therefore can improve the performance of proba-

bilistic BDPT with specular connection by modifying the problem-

atic vertices in the path sampled by specular connection. If the eye

sub-path is on the specular surface, we can always continue the

tracing of the eye sub-path and use the MIS method to get a robust

sampling. Therefore, We focus on the case where the light sub-path

is on the specular surface.

5.1 Proxy Construction
When a light sub-path 𝑦 terminates at a specular vertex 𝑦𝑠−1 and

needs to be connected with an eye sub-path 𝑧, we keep the eye

sub-path 𝑧 and the specular vertex 𝑦𝑠−1 unchanged in the proxy

sampling. Then, we retrace the light sub-path𝑦 based on the location

of 𝑧𝑡−1 that can satisfy specular restriction.

Not all the vertices in the light sub-path 𝑦 need to be retraced. To

ensure a valid BSDF at vertex𝑦𝑠−1, we only retrace𝑦𝑠−2 by sampling

the BSDF 𝐵(𝑧𝑡−1 → 𝑦𝑠−1 → 𝑦𝑠−2). However, for a light sub-path
that ends with multiple consecutive specular vertices, only retracing

𝑦𝑠−2 is insufficient to satisfy the multiple specular constraints in

the path. Therefore, if there are 𝑢 consecutive specular vertices

𝑦𝑠−1𝑦𝑠−2 ...𝑦𝑠−𝑢 at the end of a light sub-path, we will retrace 𝑢

vertices 𝑔 = 𝑦𝑠−2𝑦𝑠−3 ...𝑦𝑠−𝑢−1 to complete the proxy sampling.

The specular or diffuse attributes of each vertex in the sequence

in a proxy path should be consistent with those of the original

sequence in the original path that has been substituted. Otherwise,

there could be multiple possible proxy paths 𝑔 for a given full path
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specular surface
diffuse surface

Fig. 6. A light sub-path can be segmented into several components: the
path to be dropped out 𝑔, the residual path ¯ℎ∗, and the terminal specular
vertex 𝑦𝑠−1 located on a specular surface. The control vertex ℎ𝑐 represents
the terminal of ¯ℎ∗ and the control direction 𝜔𝑐 is the incident direction
at ℎ𝑐 . Reciprocal estimation is determined by these elements: the control
vertex ℎ𝑐 , control direction 𝜔𝑐 , specular vertex 𝑦𝑠−1, and 𝑢, which is the
vertex count of 𝑔.

𝑥 . For instance, an 𝐿𝐷𝐷𝐷𝑆𝐷𝐸 path 𝑦0𝑦1𝑦2𝑧1𝑧0 can be sampled from

either 𝑔 = 𝑦1 or 𝑔 = 𝑦1𝑦2 if the original 𝐿𝐷𝐷𝑆𝑆𝐷𝐸 path is retraced.

Dealing with multiple alternative paths 𝑔 is difficult and impractical.

So, we stop the retracing and discard the connection when the

retraced alternate path 𝑔 has a specular/diffuse mismatch with the

original. This ensures that the alternate path 𝑔 as the proxy for a

connection can be uniquely determined.

5.2 PDF Evaluation
We discuss the PDF for the incomplete sub-path sampling 𝑝 ( ¯ℎ). ¯ℎ

consists of the complete eye sub-path 𝑧 and the incomplete light

sub-path
¯ℎ𝑦 . Eye sub-path tracing is irrelevant to the tracing of the

light sub-path. Therefore 𝑝 ( ¯ℎ) is the product of 𝑝 ( ¯ℎ𝑦) and 𝑝 (𝑧) as:

𝑝 ( ¯ℎ) = 𝑝 ( ¯ℎ𝑦)𝑝 (𝑧) . (22)

Since 𝑝 (𝑧) can be accurately computed, we only need to make a

reciprocal estimation of the incomplete light sub-path 1/𝑝 ( ¯ℎ𝑦). We

further analyze the tracing of incomplete light sub-path
¯ℎ𝑦 . A light

sub-path 𝑦 = 𝑅( ¯ℎ𝑦, 𝑔) can be divided into several parts, as shown in

Figure 6. They are the alternate path 𝑔, the precedent path before

reaching the alternate path
¯ℎ∗ = 𝑦0𝑦1 ...𝑦𝑠−𝑢−2, and the last specular

vertex 𝑦𝑠−1. According to Equation 3, the probability density of a

vertex 𝑦𝑖 being traced is determined by its precedent two vertices.

Therefore, the probability density of tracing the light sub-path 𝑦

can be

𝑝 (𝑦) = 𝑝 [𝑅( ¯ℎ𝑦, 𝑔)] = 𝑝 ( ¯ℎ∗)𝑝 (𝑦𝑠−1 |𝑔, ℎ𝑐 )𝑝 (𝑔|ℎ𝑐 , 𝜔𝑐 ), (23)

where ℎ𝑐 = 𝑦𝑠−𝑢−2 is the last vertex of
¯ℎ∗,𝜔𝑐 = 𝑦𝑠−𝑢−3 → 𝑦𝑠−𝑢−2

is the incident direction of ℎ𝑐 . Under extreme conditions, ℎ𝑐 is set to

null when 𝑦0 ∈ 𝑔, 𝜔𝑐 is set to null when 𝑦0 ∈ 𝑔 or 𝑦1 ∈ 𝑔. ℎ𝑐 affects
the sampling of 𝑦𝑠−1 only when the vertex count of 𝑔 equals one.

There is no vertex before
¯ℎ∗, so the tracing of

¯ℎ∗ is irrelevant to the

alternate path 𝑔. Only 𝑦𝑠−𝑢−2 and 𝑦𝑠−𝑢−3 can make sense to the

tracing of 𝑔 and 𝑦𝑠−1. Therefore, we call ℎ𝑐 and 𝜔𝑐 as the control

vertex and control direction.

Then, according to Equation 12, the PDF for the incomplete light

sub-path
¯ℎ𝑦 is as

𝑝 ( ¯ℎ𝑦) =
∫
𝐴𝑢
𝑝 [𝑅( ¯ℎ𝑦, 𝑔)]𝑑𝜇 (𝑔)

= 𝑝 ( ¯ℎ∗)
∫
𝐴𝑢
𝑝 (𝑔|ℎ𝑐 , 𝜔𝑐 )𝑝 (𝑦𝑠−1 |𝑔, ℎ𝑐 )𝑑𝜇 (𝑔)

= 𝑝 ( ¯ℎ∗)P(𝑢,ℎ𝑐 , 𝑦𝑠−1, 𝜔𝑐 ),

(24)

where P(𝑢,ℎ𝑐 , 𝑦𝑠−1, 𝜔𝑐 ) =
∫
𝐴𝑢 𝑝 (𝑔|ℎ𝑐 , 𝜔𝑐 )𝑝 (𝑦𝑠−1 |𝑔, ℎ𝑐 )𝑑𝜇 (𝑔) is the

exact probability density that involves PDF integral and requires

reciprocal estimation.

Note that a reciprocal estimation is determined by the four vari-

ables included in Equation 24. They are the glossy count 𝑢, control

vertex ℎ𝑐 , control direction 𝜔𝑐 , and the specular vertex 𝑦𝑠−1. These

variables can be determined during the light sub-path tracing and

are completely irrelevant to the eye sub-path. Therefore, the recip-

rocal estimation can be done in the light sub-path tracing instead of

the run-time connection. This allows us to employ light sub-path

reuse [Davidovič et al. 2014] when tracing incomplete light sub-path

¯ℎ𝑦 . Specifically, we can trace and estimate the reciprocal for a small

number of incomplete light sub-paths
¯ℎ𝑦 and connect those incom-

plete sub-paths with eye sub-paths from all the pixels. By doing so,

we can save a significant amount of cost associated with reciprocal

estimation.

5.3 Supporting Distribution Construction
Our reciprocal estimation requires a supporting distribution 𝑞 to

sample the proxy path 𝑔 in the estimation of
1

P(𝑢,ℎ𝑐 ,𝑦𝑠−1,𝜔𝑐 ) . We use

three sampling strategies for the proxy path 𝑔 sampling and apply

these strategies to the supporting distribution 𝑞(𝑔).

5.3.1 Light Source Sampling. If the only vertex that requires retrac-

ing is on the light source, i.e., when the alternate path 𝑔 = 𝑦0, we can

simply sample the light source surface to obtain 𝑦0. However, this

method is disabled when 𝑢 > 1, as in the case where 𝑢 = 2 and al-

ternate path 𝑔 = 𝑦0𝑦1, with 𝑦1 being sampled by tracing from 𝑦0. To

satisfy the constraint on 𝑦1 (which has to be on a specular surface),

we need to trace 𝑦2 from 𝑦0 → 𝑦1, but 𝑦2 is the specular vertex and

fixed, making it impossible. As a result, 𝑝 (𝑦0 → 𝑦1 → 𝑦2) would
be close to zero and the alternate path 𝑔 would be ineffective for

rendering.

5.3.2 Tracing from the Control Vertex. If 𝑢 = 1 and 𝑦0 are not

included in the alternate path 𝑔, we trace the only alternate vertex

𝑦𝑠−2 from the control vertex ℎ𝑐 . If the control vertex is on the light

source, i.e., ℎ𝑐 = 𝑦0, we sample the cosine hemisphere space at ℎ𝑐
to determine the tracing direction; otherwise, we sample the BSDF

at ℎ𝑐 using 𝜔𝑐 as the incident direction to determine the tracing

direction. This method is also disabled when 𝑢 > 1 for the same

reason as light source sampling.

5.3.3 Tracing from the Specular Vertex 𝑦𝑠−1. This method samples

the alternate path 𝑔 by tracing from the specular vertex 𝑦𝑠−1. The

initial direction is sampled from the cosine hemisphere space of

𝑦𝑠−1. For each intermediate vertex 𝑦𝑠−𝑖 , continue the tracing for
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𝑦𝑠−𝑖−1 based on the BSDF at 𝑦𝑠−𝑖 and direction 𝑦𝑠−𝑖+1 → 𝑦𝑠−𝑖 until
all 𝑢 vertices are traced.

The final supporting distribution is the uniform mixture of the

available sampling strategies. That is, if 𝑢 = 1 and 𝑔 = 𝑦0, we use

light source sampling and tracing from 𝑦𝑠−1 to sample the alternate

path 𝑔; otherwise, if 𝑢 = 1 we sample the alternate path 𝑔 from the

control vertex ℎ𝑐 and the specular vertex 𝑦𝑠−1; for 𝑢 > 1, the only

available strategy is to sample the alternate path from the specular

vertex 𝑦𝑠−1.

5.4 MIS Weighting Function for Reciprocal Estimation
While our method provides an efficient strategy for sampling spec-

ular paths, it may not be efficient in all cases. For instance, when

the end of eye sub-path 𝑧𝑡−1 is very close to the specular vertex

𝑦𝑠−1, a unidirectional path tracing that proceeds to trace the eye

sub-path 𝑧𝑡−1 → 𝑦𝑠−1 may be more effective. Thus, it is necessary

for our method to combine with the existing methods by multiple

importance sampling.

A well-known MIS weighting function is the balance heuristic

[Veach and Guibas 1995b] that assigns MIS weight proportional to

the PDF of each strategy. This heuristic can minimize the upper

bound of variance of the combined estimator. However, the PDF-

proportional balance heuristic is derivated when the PDF for each

strategy can be uniquely determined. In the reciprocal estimation,

our estimation of
1

𝑝 ( ¯ℎ) is a random variable that may introduce

extra variance to the combined estimator. Therefore, we need to

derive the MIS weight for reciprocal estimation as follows.

Adopting the way similar to Veach and Guibas [1995b], our objec-

tive is to minimize 𝐸 (𝐼2), the upper bound of the combined estimator

𝐼 is as

𝐸 (𝐼2) =
∑︁
𝑡

∫
Ω
𝑤2

𝑡 (𝑥) 𝑓 2 (𝑥)𝐸 [ 1

𝑝2

𝑡 (𝑥)
]𝑝𝑡 (𝑥)𝑑𝜇 (𝑥), (25)

where 𝑡 refers to the identity of sampling strategy,𝑤𝑡 is the corre-

spondingMIS weighting function for strategy 𝑡 , and 1

𝑝̃ (𝑥 ) represents

an unbiased estimation for
1

𝑝 (𝑥 ) .
The optimal MIS weighting function for𝑤𝑡 in Equation 25 is as:

𝑤𝑡 (𝑥) =
1/(𝐸 [ 1

𝑝̃2

𝑡 (𝑥 )
]𝑝𝑡 (𝑥))∑

𝑖 1/(𝐸 [ 1

𝑝̃2

𝑖
(𝑥 ) ]𝑝𝑖 (𝑥))

. (26)

If 𝑝𝑡 (𝑥) can be precisely computed without any variance, then

𝐸 [ 1

𝑝̃2

𝑡 (𝑥 )
] = 1

𝑝2

𝑡 (𝑥 )
and Equation 26 reduces to the PDF-proportional

balance heuristic. For the proxy sampling, its performance is de-

creased by the variance of reciprocal estimation, resulting in less

MIS weight.

5.5 Subspace for Statistic
According to Sec. 4.2, the reciprocal estimation requires the upper

bound 𝐵 for optimization. In Sec. 5.4, 𝐸 [ 1

𝑝̃2

𝑡 (𝑥 )
] and 𝑝𝑡 (𝑥) are re-

quired to compute the MIS weight. However, those statistical data

are unavailable in the practical estimation. We need an approxima-

tion for the statistical data.

In Equation 24, reciprocal estimation can be identified by four

variables: the specular vertex𝑦𝑠−1, the control vertex ℎ𝑐 , the control

direction 𝜔𝑐 , and the glossy count 𝑢. We adopt the same mechanism

of subspace proposed by Su et al. Su et al. [2022] and trace a small

number of 𝐿(𝑆 |𝐷)∗𝑆𝐷𝑆∗𝐸 paths by PT at the beginning of rendering.

The control and specular vertices from these paths are used to build

control subspace and specular subspace, respectively, to classify ℎ𝑐 ,

𝜔𝑐 , and 𝑦𝑠−1. A control subspace maps (ℎ𝑐 , 𝜔𝑐 ) to control subspace

label 𝐶 ; a specular subspace maps 𝑦𝑠−1 to a specular subspace label

𝑆 . This allow us to approximate P(𝑢,ℎ𝑐 , 𝑦𝑠−1, 𝜔𝑐 ) as
P(𝑢,ℎ𝑐 , 𝑦𝑠−1, 𝜔𝑐 ) ≈ P(𝑢,𝐶, 𝑆). (27)

We do not use P(𝑢,𝐶, 𝑆) directly to estimate the reciprocal. Instead,

we compute and store the statistical data for reciprocal estimation

based on (𝑢, 𝑆,𝐶) and these statistical data are used to support

rendering tasks such as selecting upper bound 𝐵 and computing

MIS weight.

5.6 Probabilistic Light Selection in Subspace
Our algorithm enables sampling of a specular path by connection

strategy, which can further improve rendering efficiency when com-

bined with existing probabilistic connection algorithms. However,

some adaptations should be made to these connection algorithms

for proper integration.

Most of the connection algorithms rely on the local contribution

𝑓𝑦 (𝑦) of light sub-path to construct their resampling distribution.

However, retracing of the proxy vertices may significantly alter

the light sub-path, causing the 𝑓𝑦 (𝑦) of the original sub-path to

differ greatly from the new proxy sub-path. Therefore, connection

algorithms should not use the 𝑓𝑦 (𝑦) of the original sub-path in their

contribution construction.

In our implementation, we employ the Subspace-based Proba-

bilistic Connection for BPT (SPCBPT) [Su et al. 2022] to select the

appropriate light sub-path for proxy sampling. We utilize the specu-

lar subspace discussed in section 5.5 to cache the incomplete light

sub-paths and resample them based on their respective specular

subspace.

A subspace sampling matrix Γ [𝑇, 𝑆] is required to determine the

PMF for an eye subspace𝑇 to sample the specular subspace 𝑆 in the

first stage of subspace sampling. We construct the subspace sam-

pling matrix based on the expected contribution of the proxy path.

Specifically, Γ [𝑇, 𝑆] is proportional to the expected contribution for

an incomplete sub-path
¯ℎ𝑦 ∈ 𝑆 and an eye sub-path 𝑧 ∈ 𝑇 . We learn

the Γ matrix on-the-fly during rendering. In the second sampling

stage to sample the sub-path from the subspace, the sub-path is

simply sampled uniformly in the specular subspace 𝑆 to obtain the

incomplete sub-path for the subsequent proxy sampling.

6 EXPERIMENTS AND RESULTS
We validate our approach in various scenarios and make compar-

isons with unidirectional path tracing (PT) with MIS combination of

next event estimation (NEE) as the baseline, the state-of-the-art prob-

abilistic connections method SPCBPT [Su et al. 2022], an SPCBPT

with Light Tracing (LT) enabled, and an LVCBPT [Davidovič et al.

2014] with LT enabled, which is a GPU accelerated version of BDPT

that serves as a BDPT baseline. Our method is implemented based on

SPCBPT and uses SPCBPT to handle the non-specular paths and fo-

cuses on the sampling of the specular involved path. Mean absolute
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percentage error (MAPE) is used as the metric for comparison. We

also provide the comparison and combination with path guiding of

Müller et al. [2017], and the effect of subspace sampling. In Sec. 6.6,

we provide additional results comparing SMIS/MMIS sampling with

our reciprocal estimation technique in proxy tracing. Furthermore,

in Sec. 6.7, we showcase the application of reciprocal estimation as

a substitute for SMIS in photon plane volume rendering, achieving

superior performance in scenarios where SMIS previously excelled.

6.1 Experimental Setting
6.1.1 Renderer Setting. All the algorithms are implemented based

on the OptiX architecture [Parker et al. 2010], and run on an NVIDIA

GeForce RTX 3090 GPU with an Intel Core i9-12900K CPU on aWin-

dows system. All images are rendered in a resolution of 1920× 1000.

We build 300 eye subspaces and 300 light subspaces for SPCBPT.

Compared to the default setting of 1000 subspaces in SPCBPT, a

smaller number of subspaces can avoid overfitting and works better

for scenes with easy visibility, as discussed in Su et al. [2022]. We

use PT to pretrace 1, 000, 000 full paths to train the sampling dis-

tribution of SPCBPT. In each iteration, SPCBPT, LVCBPT and our

method all trace𝑀 = 10, 000 light sub-paths for resampling. Our ap-

proach shares the same parameter and configuration with SPCBPT

as recommended in Su et al. [2022], unless otherwise stated.

In our proxy sampling method, we impose constraints on the

path processing. We drop out the problematic vertices and obtain

the incomplete light sub-path only if there is no control vertex or

the control vertex is on the light source. This constraint limits the

light sub-path type to 𝐿𝐷𝐷𝑆
+
and 𝐿𝐷𝐷𝐷𝑆

+
, as the contribution

of 𝐿𝐷𝐷𝐷
+𝑆+ is negligible and not visible in the rendered image.

Additionally, the glossy count 𝑢 is limited to 1 ≤ 𝑢 ≤ 4. Paths that

do not satisfy these constraints are handled by SPCBPT. In each

iteration, we perform reciprocal estimation on up to 400 incomplete

light sub-paths and discard the others to reduce overhead as much

as possible. The incomplete sub-paths are divided into 100 specular

subspaces for probabilistic connections. We use only 10 subspaces

for the control vertex since the control vertex is limited to the light

source. To reduce the variance of reciprocal estimation, we repeat

the reciprocal estimation 5 times for each incomplete light sub-path

and use the average as the final estimation. We learn the subspace

sampling matrix in the first 40 iterations and then freeze the matrix

for stable rendering performance. We only sample the specular light

sub-path and perform proxy sampling when the eye sub-path travels

to its first diffuse surface. Additionally, we divide the image into

grids, with each grid containing 10 × 10 pixels. If the contribution

of our target path exceeds 5% in a grid, we sample the incomplete

light sub-path and perform the proxy sampling in probability 100%;

otherwise, the probability is set to 20%.

We adopt the DISNEY principled BSDF [Brent Burley 2012] for

the BSDF model of highly glossy material. The roughness of most

of the specular material in our experiment is set to 0.01. A material

is identified as specular when the material is metallic or transparent

with roughness smaller than 0.2.

6.1.2 Scene Settings. Six benchmarks, including Bedroom, Break-
fast, Projector, Hallway, Kitchen, and Water, are tested in our exper-

iment. These benchmarks cover different illumination conditions

and glossy surface settings.

The Bedroom scene is illuminated by a light source positioned

above amirror. Some of the light directly illuminates the scene, while

the other light is reflected off the mirror and into the scene as our

target path. The Mirror on the wall shows the effect of 𝐿𝐷𝐷𝑆𝐷𝑆𝐸

path. In the Breakfast scene, two glossy angular spheres are posi-

tioned above two cylindrical light sources on the table to create red

and blue caustic patterns on the wall. The Projector scene features
a textured light source enclosed in a box with a convex lens, creat-

ing a projector effect. The convex lens refracts the textured light

before projecting it onto the wall. Hallway is mainly illuminated

by two light sources enclosed in a glass lamp, requiring the light to

travel through the refractive glass to enter the scene. In the Kitchen
scene, the light comes from the outside and is located behind a

two-layer glass window. Finally, theWater scene displays a classic
caustic pattern created by small light sources and complex refractive

surfaces.

The preprocessing times for SPCBPT to pre-trace (using PT) the

full paths never exceed 5 seconds, which depends on the efficiency

of PT. On average, each pixel only needs to trace approximately 0.5

path to obtain 1, 000, 000 full paths for preprocessing. This time cost

is negligible compared to the convergence time of PT. Therefore,

the preprocessing time is not taken into consideration during our

comparisons. Projector, Hallway, andWater are rendered by PT in

10𝑀 iterations and the rest scenes are rendered by SPCBPT in 100𝐾

iterations.

6.2 Performance Evaluation
We show the performance of different methods in Figure 1 and Fig-

ure 7. We also highlight the zoom-in regions for a detailed com-

parison. When rendering difficult specular-involved paths, both PT

and SPCBPT can only rely on the sampling of the unidirectional

path tracing. However, within the given time budget, PT makes a

much higher number of iterations than that of SPCBPT due to its

very low overhead. Therefore, PT can sample this specular path

more efficiently than SPCBPT. Conversely, SPCBPT can select the

appropriate light sub-path in the connection and produce much

better results in indirect illumination. The performance difference is

evident in the highlight region of Breakfast and Hallway at Figure 7.

Our method focuses on sampling the specular-involved path and

utilizes the strategy from SPCBPT to sample the residual path. In

most cases, we can achieve better rendering performance on diffi-

cult paths like 𝐿𝐷𝐷 (𝑆 |𝐷)∗𝑆𝐷𝑆∗𝐸 than PT and SPCBPT using the

same time budget and fewer iterations. Our method takes extra

computational overhead and the rendering speed for each iteration

of our method is slower than SPCBPT at around 25% ∼ 50%. The

extra overhead comes from reciprocal estimation, retracing for the

proxy vertices, and the MIS weight computation.

Figure 8 shows the convergence over time in terms of MAPE in all

scenarios. Our approach outperforms others significantly in terms

of convergence performance compared to other methods. In partic-

ular, in Breakfast, Projector, and Hallway, neither PT nor SPCBPT
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Reference SPCBPT+LT OursPT

3690 spp 454 spp 326 spp

MAPE: 23.63% MAPE: 7.85%MAPE: 23.63%

Reference SPCBPT+LT OursPT

2820 spp 550 spp 446 spp

MAPE: 30.82% MAPE: 20.50%MAPE: 138.82%

Reference SPCBPT+LT OursPT

3330 spp 331 spp 186 spp

MAPE: 13.75% MAPE: 12.17%MAPE: 15.88%

Reference SPCBPT+LT OursPT

2490 spp 402 spp 350 spp

MAPE: 47.51% MAPE: 12.19%MAPE: 120.70%

Reference SPCBPT+LT OursPT

21370 spp 2392 spp 1262 spp

MAPE: 44.32% MAPE: 30.87%MAPE: 34.89%

Fig. 7. Equal-time comparison: PT with NEE integration, SPCBPT [Su et al. 2022], SPCBPT with LT enabled, and our approach. Rendering time cost is 180𝑠 for
Water and 60𝑠 for other scenes. The leftmost side shows the full frame synthesized by our approach. The number of Iterations (SPP, samples per pixel) and
MAPE are shown in the zoom-in region. Our approach shows superior performance in terms of MAPE and produces less noisy results than other approaches.
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Fig. 8. Convergence over time (3 min) in terms of MAPE for PT, SPCBPT [Su et al. 2022], SPCBPT with LT, LVCBPT [Davidovič et al. 2014] with LT,
and ours. Our approach shows superior convergence performance in all tested scenarios. InWater, the SPCBPT curve overlaps with the

SPCBPT+LT curve because a specular and transparent surface seals the box, making LT have no contribution.

Table 3. Time cost (measured in seconds) and iterations to reach a specified MAPE by different methods. Our approach shows the best performance consistently
and outperforms others significantly in both time cost and iteration required.

Scene

Bedroom Breakfast Hallway Kitchen Projector Water

(20%) (30%) (35%) (10%) (20%) (35%)

Iter. Time Iter. Time Iter. Time Iter. Time Iter. Time Iter. Time

PT 6533 113.35 >14324 >200 >7631 >200 9248 168.42 >11071 >200 21225 178.37

SPCBPT 582 81.05 1529 171.45 >1295 >200 788 142.44 >1357 >200 >2691 >200

SPCBPT+LT 683 90.22 609 78.68 >1311 >200 1052 189.38 >1412 >200 >2666 >200

LVCBPT+LT 983 100.27 1739 135.54 >1790 >200 >1358 >200 >1844 >200 >2783 >200

Ours 29 6.23 62 8.63 27 5.73 337 107.26 70 18.93 829 121.32

is able to handle all the light paths well, resulting in slow conver-

gence over time. In contrast, our method can effectively sample

the 𝐿𝐷𝐷 (𝑆 |𝐷)∗𝑆𝐷𝑆∗𝐸 path while allowing sufficient time for other

advantageous sampling strategies from SPCBPT to contribute to the

indirect illumination, ensuring stable convergence. While LT can

handle paths with type 𝐿𝐷𝐷𝑆𝐷𝐸, like the reflected light on the wall

in Breakfast. However, our method achieves better performance than

SPCBPT with LT, demonstrating its efficiency in sampling these

paths. The Breakfast scene is typically considered manageable with

a pure LT algorithm. As the BDPT baseline, LVCBPT+LT generally

shows poorer performance than SPCBPT+LT, as shown in Figure 8

and Table 3. In Projector, the subspace-based probabilistic sampling

will struggle with specular paths, and LVCBPT+LT exhibits a slight

advantage due to faster iteration speeds. However, in other test

scenes, results show that SPCBPT+LT outperforms LVCBPT+LT,

which is consistent with the experimental results reported in Su

et al. [2022]. Our method shows the best performance in all scenes.

To further evaluate our algorithm, we conducted an additional

experiment comparing LT with our approach, as shown in Figure 9.

Remarkably, our method outperformed LT, delivering superior ren-

dering results in just 60s, while LT required 180s but with much
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Fig. 9. Comparison between Light Tracing (LT) and our approach in Break-
fast. Our approach delivers superior rendering results in 60𝑠 , whereas LT
takes 180𝑠 . This showcases the efficiency of our method in efficiently sam-
pling challenging paths and producing high-quality caustic patterns in
significantly less time than LT.

MIS Weight Visualization

O
ther Strategies

Proxy Sam
pling

Importance SamplingUniform samplingUniform sampling Importance Sampling

Equal Iterations Comparison (Specular Path Only)

Fig. 10. MIS weight visualization and equal iterations (32 iterations for
Bedroom, 128 iterations forWater) comparison for our method with/without
subspace-based importance sampling for the incomplete light sub-path.
Overall MAPE for uniform sampling vs. importance sampling is 69.13% vs.
54.98% inWater and 20.96% vs. 19.74% in Bedroom.

noise. This highlights the efficiency of our method in effectively sam-

pling challenging paths and producing high-quality caustic patterns

in significantly less time than LT.

We also report the statistics of time cost and iterations required

to reach the specified MAPE in Table 3. Our approach demonstrates

higher efficiency over SPCBPT, SPCBPT with LT, and PT, although

the improvement varies across different scenes. For instance, in

scenarios illuminated by large light sources like Kitchen, tracing
the direct illumination of specular light sub-path is relatively easier

for PT. So, our improvement is less impressive. In contrast, in a

challenging scene where the light source is very small, it becomes

extremely difficult for unidirectional path tracing to find the light

source. Our approach is particularly advantageous.

6.3 Sampling in Subspace
In our approach, subspace-based probabilistic sampling is used to

select the incomplete light sub-path for proxy sampling. We learn

the effect of subspace sampling through equal-iteration comparison

and visualizing the MIS weight function for proxy sampling. The

comparison for our method with/without subspace-based proba-

bilistic sampling is shown in Figure 10. We focus on the sampling of
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Fig. 11. Convergence over time in terms of MAPE. We compare the perfor-
mance of PT+Path Guiding (PG), SPCBPT+PG, our approach+PG, and our
approach solely. 60𝑠 is used for Breakfast and 180𝑠 for Water. Path guiding
is pre-trained for 30𝑠 , and the pretraining time cost is not included. Our
approach outperforms SPCBPT+PG significantly in Breakfast, and achieves
speedup when combined with PG in Water scene.

Fig. 12. Rendering results obtained by equal time (60𝑠 for Breakfast and
180𝑠 for Water) corresponds to Figure 11. The upper row demonstrates the
superiority of our approach over SPCBPT+PG; the lower row highlights the
improvement of our algorithm through combination with PG in this Water
scene.

the specular-involved 𝐿𝐷𝐷 (𝑆 |𝐷)∗𝑆𝐷𝑆∗𝐸 path and disable the ren-

dering for the other paths. MIS weight is assigned based on the

quality of proxy sampling, and the red regions indicate the advan-

tage area for our method. Generally, the efficiency of proxy sampling

is highest when the diffuse surface is far from the specular surface;

thus, the improvement of subspace-based probabilistic sampling

is relatively small in this case (overall MAPE 20.96% → 19.74%

in Bedroom). However, in a more complicated scene setting where

the diffuse surface is close to the specular surface, the probabilistic

connections method can help find the appropriate incomplete path

for connection and provide efficient enhancement for the specular

path rendering (overall MAPE 69.13% → 54.98% in Water), thus,
extending the capability of proxy sampling.

6.4 Combination and Comparison with Path Guiding
Our approach can be integrated well with the sophisticated path

guiding technique. We integrate the path guiding method based

on the SD-tree Müller et al. [2017] with our method and test its
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Fig. 13. Convergence over time in terms of MAPE. We perform an ablation
study to assess the performance with and without our RR technique. The
base algorithm is Booth [2007] with parameter 𝑟 set at four different values.
The results demonstrate the effectiveness and superiority of our RR tech-
nique.

performance at Breakfast and Water. For each scene, we spend

30𝑠 to train the SD-tree for path guiding. We show the equal-time

rendering with convergence plot in Figure 11, and visual result in

Figure 12, time cost for pre-training not included.

Since our approach can handle the specular-involved path in

Breakfast exceptionally well, it converges fast within just 60𝑠 . There-

fore, the speedup from path guiding is not significant and may even

slightly slow down the performance of our approach, as shown in

the Breakfast scene. We also observed that our approach signifi-

cantly outperforms SPCBPT+PG, possibly due to the small light

source and the diffuse surface being far from the specular surface.

In such case, a 30𝑠 training may not be sufficient for path guiding

to help SPCBPT find the location of the light source quickly. In the

scenario of Water, the performance of our proxy sampling declines

when the diffuse surface is very close to the specular surface (as

indicated by the blue region in the MIS visualization of Figure 10).

Because in this case the specular vertex 𝑦𝑠−1 of the appropriate

incomplete sub-path is usually very close to the eye sub-path and

harder to select in the incomplete sub-path sampling, making our

proxy sampling ineffective. In contrast, random direction sampling

has a high probability of performing a good 𝐷 → 𝑆 bounce when

the distance between diffuse surface 𝐷 and specular surface 𝑆 is

very close. In such cases, combining our method with path guiding

can gain benefits from both sides and improve performance, leading

to even better results for this complicated setting.

6.5 Ablation Study on RR Technique
To assess the effectiveness of our RR technique, we conducted an

ablation study, as shown in Figure 13. Due to the integration chal-

lenges with the method proposed by Blanchet et al. [2015], we

opted for the framework described by Booth [2007] as our baseline.

Their RR strategy requires a manually set hyperparameter, 𝑟 , and

also necessitates an upper bound, 𝐵, which was the same in their

experiments and ours. Our experimental findings reveal that the

performance of the algorithm generally improves with an increase

in 𝑟 up to a certain point, after which it diminishes. Specifically,

the turning point occurs at an order of magnitude of 100 in the

Bedroom scenario and at 1000 in the Hallway scenario, indicating

that the optimal range for 𝑟 varies between different scenes. our

results significantly outperform the baseline, irrespective of the 𝑟 ’s

setting, suggesting that our RR method can effectively enhance the

performance of reciprocal estimation.

6.6 Comparison with SMIS/MMIS
SMIS/MMIS can serve as a substitution for our reciprocal estima-

tion in our proxy tracing approach. Therefore, we have integrated

SMIS/MMIS into our proxy tracing framework and conducted a com-

parative analysis with our reciprocal estimation-based approach,

using scenes such as Bedroom, Hallway, and Projector. For this com-

parison, We only render the paths enhanced with proxy tracing, as

the other parts remain consistent across methods. The 𝑛 in SMIS𝑛

refers to the number of techniques combined in SMIS. We mainly

compare with 𝑛 = 4 and 𝑛 = 8 cases here since a larger 𝑛 would be

costly due to the𝑂 (𝑛2) cost in the MIS process. Figure 14 illustrates

the convergence over time in terms of MAPE in these scenes. Our

reciprocal estimator outperforms SMIS/MMIS significantly. Reflect-

ing on the limitations of SMIS/MMIS outlined in Sec. 4.3, it becomes

evident that these constraints are noticeable when applied to scenes

like Hallway and Projector.
In Hallway, there are four light sources including an environ-

ment light. The scene is predominantly illuminated by two lights

within glass lamps. It corresponds to the second failure case de-

scribed in Sec. 4.3, where different lights have distinct visibilities.

Figure 15 reveals the bias inherent in SMIS𝑛. In SMIS2, SMIS4, and

SMIS8, the illuminated areas appear noticeably darker compared

to our unbiased approach. Increasing 𝑛 reduces this bias, making

SMIS16 visually closer to our technique. However, note that there

are only four light sources in this scene. In more complex scenes

with hundreds or thousands of light sources, SMIS would require an

impractically large 𝑛 to get good results. Additionally, we examined

MMIS4 in Figure 15. MMIS, which integrates SMIS with unbiased

techniques like PT, mitigates the bias of SMIS. Specifically, the hot

pixels in the output indicate other techniques’ contribution. Never-

theless, as no technique effectively samples these paths, the overall

efficiency remains sub-optimal. In Projector, the primary source of

illumination is a projector that comprises a textured light source

within a box and a convex lens. This setup aligns with the first

failure case for SMIS, characterized by multiple specular vertices

following the light vertex. In Figure 15, we demonstrate the inability

of SMIS/MMIS in this scenario. Conversely, in Bedroom, with its

single light source and absence of consecutive specular surfaces,

conditions are seemingly favorable for SMIS/MMIS. Despite this, our

approach still significantly outperforms SMIS/MMIS, underscoring

its high efficiency even in advantageous settings for the comparative

methods.

6.7 Reciprocal Estimation for CMIS Framework
Our reciprocal estimation method can be applied to the CMIS frame-

work since it can provide unbiased and efficient estimation for CMIS

weight 𝑤̃ (𝑡, 𝑥) in Equation 6. Here, we apply our method to the pho-

ton plane algorithm [Deng et al. 2019], which is an algorithm where

CMIS excels.

Photon plane is introduced by Deng et al. [2019] for single scat-

tering volumetric rendering. The sampling method is shown in
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Fig. 14. Convergence over time in terms of MAPE. We compare the performance of SMIS4, SMIS8, MMIS8, and our approach. 120𝑠 is used for each scene. Our
approach outperforms SMIS/MMIS significantly in Hallway and Projector, and even in Bedroom where SMIS/MMIS was considered to be advantageous.

SMIS2 SMIS4 MMIS4

SMIS8 SMIS16 Ours

MAPE: 57.15% MAPE: 41.80% MAPE: 56.86%

MAPE: 28.09% MAPE: 21.36% MAPE: 12.96% (a)

MAPE: 84.96% MAPE: 18.54%

MMIS16 Ours

(b)

Fig. 15. Comparison between SMIS/MMIS and our approach based on reciprocal estimation. We focus exclusively on rendering paths that are enhanced with
proxy tracing, as the other components remain identical. (a) In Hallway, SMIS𝑛 displays obvious bias (darker) when 𝑛 is small. MMIS4 mitigates SMIS4’s bias by
combining unbiased techniques, the contribution of which appears as hot pixels. (b) In Projector, SMIS/MMIS completely fails to capture the specular-involved
difficult paths (see left), while our approach can handle this scene efficiently (see right).

Figure 16(a). A photon plane is determined by a segment 𝑠 in the

light source and an outgoing direction 𝜔𝑙 . When an eye sub-path

hits the photon plane, a light source vertex can be found by pro-

jecting the intersection vertex in direction −𝜔𝑙 , then a full path 𝑥

can be sampled by connecting the camera, the intersection and the

projected vertex on the light source.

Computing 𝑝 (𝑥) is a challenge since the same 𝑥 can be generated

from different photon plane. West et al. [2020] indicated that the

sampling of the segment 𝑠 can be split into the sampling of rotation

angle 𝛼 and bias 𝑣 , and 𝛼 can be treated as the technique identifier

in technique space T = [0, 𝜋] for CMIS framework, as shown in

Figure 16(b). The CMIS weight 𝜔̃ (𝛼, 𝑥) = 𝑝 (𝛼,𝑥 )∫
T 𝑝 (𝛼,𝑥 )𝑑𝛼

involves the

reciprocal of integral which is handled by SMIS in West et al. [2020].

We replace SMIS by our reciprocal estimationmethod. The efficiency

of reciprocal estimation depends on the supporting distribution for

sampling𝛼 . The optimal supporting distribution𝑞∗ (𝛼 |𝑥) depends on
𝜔𝑒 as well as the position of the vertex on the light source. Therefore,

we cache the piece-wise approximation of 𝑞∗ (𝛼 |𝑥) for multiple 𝑥 ,

and select the appropriate 𝑞(𝛼 |𝑥) based on 𝜔𝑒 and the vertex on the

light source of current 𝑥 . The memory cost of the cache is within

16MB.
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(a) (b)

Fig. 16. (a) Sampling method of photon plane algorithm [Deng et al. 2019].
Photon plane is generated by sampling a segment 𝑠 in the light source and
an outgoing direction 𝜔𝑙 . When an eye sub-path hits the photon plane, the
camera, the intersection position, and the 𝜔𝑙 -projection of the intersection
position on the light source make the full path 𝑥 . (b) A segment 𝑠 can be
sampled by first sampling a rotation angle 𝛼 and then sampling the bias 𝑣.
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Fig. 17. Equal-sample comparison between estimators for SMIS [West et al.
2020] and our method, specifically in volumetric scenarios rendered by
photon plane algorithm [Deng et al. 2019]. SMAPE is visualized by heat
map and MSE below is magnified by 10

4. CMIS Cost refers to the average
time cost of 𝑝 (𝛼, 𝑥 ) used for CMIS weight estimation.

The equal-sample comparison between SMIS2/SMIS4 and our

method is shown in Figure 17. Note that SMIS and our method

incur different computational costs for evaluating 𝑝 (𝛼, 𝑥) to esti-

mate the CMIS weight, 𝜔̃ (𝛼, 𝑥). Our method achieves more efficient

CMIS weight estimation with lower computation cost, showing

the advantages of our reciprocal estimation method. In terms of

SMAPE (Symmetric Mean Absolute Percentage Error) and MSE,

our approach also shows superior performance over the alternative

approaches.

7 CONCLUSION, LIMITATION, AND FUTURE WORK
In this paper, we have proposed a novel method for tracing difficult

specular-involved paths based on efficient reciprocal estimation.

By discarding problematic segments of the original path and trac-

ing a proxy path that can meet specular constraint, we enable a

probabilistic connection to handle specular paths well. To ensure

unbiased estimations, we introduce a sub-optimal RRS function that

significantly boosts efficiency. Additionally, we propose an optimal

setting of 𝐵, minimizing the upper bound on the cost of our recipro-

cal estimation. Specifically, This optimized setting not only aids in

the reciprocal estimation required for tracing incomplete sub-paths

but also employs a light sub-path reuse strategy to diminish the

overhead associated with reciprocal estimations. We have developed

a method that allows for replacing small segments of the path, result-

ing in significant improvements. We believe this approach serves as

a powerful tool, enabling the seamless substitution of problematic

paths with preferable alternatives while maintaining the unbiased

nature of the Monte Carlo estimation of the path integral.

To provide an intuitive understanding, our method improves

connection efficiency by broadening the narrow lobe of the BSDF

on specular surfaces to encompass a wider range. Specifically, for the

𝐿𝐷𝐷𝑆
∗𝑆 type light sub-path, this expanded range correlates with the

projection area of an area light source at the specular vertex. This

enhancement facilitates the inclusion of an eye sub-path within

the valid range more easily, particularly when the eye sub-path

is far from the specular vertex or when the light source is large.

However, challenges arise when the specular surface is far from a

small light source or when the diffuse eye vertex is near the specular

light vertex. Under such conditions, our connection strategy may

struggle to be effective. Despite the assistance of subspace-based

probabilistic connections, the efficiency of our method may still face

limitations. This is a fundamental challenge of connection-based

sampling strategies, highlighting an area ripe for future research

endeavors.

Another limitation of our method pertains to the sampling effi-

ciency of proxy vertices, which yields optimal results when these

vertices are readily samplable. Constructing an efficient supporting

distribution for reciprocal estimation presents significant challenges.

To mitigate these issues, we have incorporated path guiding tech-

niques, as demonstrated in theWater scene depicted in Figure 12,

specifically to address scenarios involving close specular-diffuse

interactions. Furthermore, it is feasible to integrate path guiding

with our method to develop a more efficient supporting distribu-

tion. However, the specifics of such an integration require further

detailed exploration.

In addition to enhancing the rendering of paths involving specular

interactions, our proposed proxy sampling method holds promise

for a range of applications. It allows for the retracing of problem-

atic segments of a full path while preserving most existing vertices,

complementing current sampling methodologies. Identifying appro-

priate scenarios for its application and reducing the computational

overhead associated with reciprocal estimation are challenges we

aim to tackle in our future research. Furthermore, our method has

the potential to become a state-of-the-art BDPT algorithm. It can

be effectively integrated with the recent Progressive Photon Map-

ping (PPM) algorithm to form a highly efficient Vertex Connection

and Merging (VCM) technique [Lin et al. 2023]. This integration

could significantly speed up the VCM technique. Exploring this

integration represents a promising avenue for our future research.

ACM Trans. Graph., Vol. 43, No. 4, Article 97. Publication date: July 2024.



97:18 • Fujia Su, Bingxuan Li, QingYang Yin, Yanchen Zhang, and Sheng Li

ACKNOWLEDGMENTS
We extend our gratitude to all the anonymous reviewers for their

helpful suggestions. This work is supported by the National Key

R&D Program of China (No. 2023YFF0905103) and NSFC of China

(No. 62172013). We also wish to thank all the test scenes providers:

MrChimp2313 (House), Wig42 (Hallway), SlykDrako (Bedroom),

Jay-Artist (Kitchen), Yaoyi Bai et al. (Projector), Benedikt Bitterli

(Water). We would like to thank Mr. Jierui Ren and Mr. Xiaobai Chen

for their assistance in making parts of the illustrations.

REFERENCES
Sai Bangaru, Tzu-Mao Li, and Frédo Durand. 2020. Unbiased Warped-Area Sampling

for Differentiable Rendering. ACM Trans. Graph. 39, 6 (2020), 245:1–245:18.
Jose H. Blanchet, Nan Chen, and Peter W. Glynn. 2015. Unbiased Monte Carlo compu-

tation of smooth functions of expectations via Taylor expansions. In 2015 Winter
Simulation Conference (WSC). 360–367. https://doi.org/10.1109/WSC.2015.7408178

Thomas E. Booth. 2007. Unbiased Monte Carlo Estimation of the Reciprocal of an

Integral. Nuclear Science and Engineering 156, 3 (2007), 403–407. https://doi.org/10.

13182/NSE07-A2707 arXiv:https://doi.org/10.13182/NSE07-A2707

Walt Disney Animation Studios Brent Burley. 2012. Physically-based shading at disney.

In ACM SIGGRAPH. 1–27.
D. Chandler. 1987. Introduction ToModern Statistical. Introduction ToModern Statistical.

T. Davidovič, J. Krivanek, M. Hašan, and P. Slusallek. 2014. Progressive Light Transport

Simulation on the GPU. ACM Trans. Graph. (TOG) 33, 3 (05 2014), 29:1–19.
X. Deng, S. Jiao, B. Bitterli, and W. Jarosz. 2019. Photon surfaces for robust, unbiased

volumetric density estimation. ACM Trans. Graph. (TOG) 38, 4 (07 2019), 46:1–12.
I. Georgiev, J. Krivanek, T. Davidovivc, and P. Slusallek. 2012. Light Transport Simulation

with Vertex Connection and Merging. ACM Trans. Graph. (TOG) 31, 6 (11 2012),
192:1–192:10.

Toshiya Hachisuka and Henrik Wann Jensen. 2009. Stochastic progressive photon

mapping. ACM Transactions on Graphics (TOG) 28, 5 (2009), 141.
T. Hachisuka, S. Ogaki, and H. W. Jensen. 2008. Progressive Photon Mapping. ACM

Trans. Graph. (TOG) 27 (12 2008), 130.
T. Hachisuka, J. Pantaleoni, and H. W. Jensen. 2012. A Path Space Extension for Robust

Light Transport Simulation. ACM Trans. Graph. (TOG) 31, 6 (11 2012), 191:1–10.
Johannes Hanika, Marc Droske, and Luca Fascione. 2015. Manifold Next Event Estima-

tion. Comput. Graph. Forum 34, 4 (07 2015), 87–97.

H. W. Jensen. 1996. Importance Driven Path Tracing Using the Photon Map. Euro-
graphics Rendering Workshop (09 1996), 326–335.

H. W. Jensen and N. Christensen. 1995. Photon Maps in Bidirectional Monte Carlo Ray

Tracing of Complex Objects. Computers & Graphics 19 (03 1995), 215–224.
Ivo Kondapaneni, Petr Vévoda, Pascal Grittmann, Tomáš Skřivan, Philipp Slusallek, and

Jaroslav Křivánek. 2019. Optimal multiple importance sampling. ACM Transactions
on Graphics (TOG) 38, 4 (2019), 1–14.

E. P. Lafortune and Y. D. Willems. 1999. A 5D Tree to Reduce the Variance of Monte

Carlo Ray Tracing. In Rendering Techniques.
He Li, Beibei Wang, Changhe Tu, Kun Xu, Nicolas Holzschuch, and Ling-Qi Yan.

2022. Unbiased Caustics Rendering Guided by Representative Specular Paths. In

SIGGRAPH Asia 2022 Conference Papers. 1–8.
Zehui Lin, Chenxiao Hu, Jinzhu Jia, and Sheng Li. 2023. Hypothesis Testing for Progres-

sive Kernel Estimation and VCM Framework. IEEE Transactions on Visualization
and Computer Graphics (2023), 1–15. https://doi.org/10.1109/TVCG.2023.3274595

Z. Lin, S. Li, X. Zeng, C. Zhang, J. Jia, G. Wang, and D. Manocha. 2020. CPPM: chi-

squared progressive photon mapping. ACM Trans. Graph. (TOG) 39, 6 (11 2020),
240:1–12. https://doi.org/10.1145/3414685.3417822

T. Müller, M. Gross, and J. Novák. 2017. Practical Path Guiding for Efficient Light-

Transport Simulation. Computer Graphics Forum 36, 4 (07 2017), 91–100.

K. Nabata, K. Iwasaki, and Y. Dobashi. 2020. Resampling-aware Weighting Functions

for Bidirectional Path Tracing Using Multiple Light Sub-Paths. ACM Trans. Graph.
(TOG) 39, 2 (03 2020), 15:1–11.

Jan Novák, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. 2018. Monte

Carlo methods for volumetric light transport simulation. Computer Graphics Forum
(Proceedings of Eurographics - State of the Art Reports) 37, 2 (2018). https://doi.org/

10/gd2jqq

S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke, D. McAllister,

M. McGuire, K. Morley, A. Robison, et al. 2010. Optix: a general purpose ray tracing

engine. ACM Trans. Graph. (TOG) 29, 4 (07 2010), 66:1–13.
S. Popov, R. Ramamoorthi, F. Durand, and G. Drettakis. 2015. Probabilistic Connections

for Bidirectional Path Tracing. Computer Graphics Forum 34, 4 (07 2015), 75–86.

Hao Qin, Xin Sun, Qiming Hou, Baining Guo, and Kun Zhou. 2015. Unbiased Photon

Gathering for Light Transport Simulation. ACM Trans. Graph. 34, 6, Article 208 (nov
2015), 14 pages. https://doi.org/10.1145/2816795.2818119

A. Rath, P. Grittmann, Sebastian H., P. Vévoda, P. Slusallek, and J. Křivánek. 2020.

Variance-Aware Path Guiding. ACM Trans. Graph. (TOG) 39, 4 (07 2020), 151:1–12.
Alexander Rath, Pascal Grittmann, Sebastian Herholz, Philippe Weier, and Philipp

Slusallek. 2022a. EARS: Efficiency-Aware Russian Roulette and Splitting. ACM
Trans. Graph. (TOG) 41, 4, Article 81 (jul 2022), 14 pages. https://doi.org/10.1145/

3528223.3530168

Alexander Rath, Pascal Grittmann, Sebastian Herholz, Philippe Weier, and Philipp

Slusallek. 2022b. EARS: Efficiency-Aware Russian Roulette and Splitting. ACM
Transactions on Graphics (Proceedings of SIGGRAPH 2022) 41, 4, Article 81 (jul 2022),
14 pages. https://doi.org/10.1145/3528223.3530168

F. Su, S. Li, and G. Wang. 2022. SPCBPT: Subspace-based Probabilistic Connections for

Bidirectional Path Tracing. ACM Trans. Graph. (TOG) 41, 4 (07 2022), 77:1–14.
Y. Tokuyoshi and T. Harada. 2018. Bidirectional path tracing using backward stochastic

light culling. 1–2.

Y. Tokuyoshi and T. Harada. 2019. Hierarchical russian roulette for vertex connections.

ACM Trans. Graph. (TOG) 38, 4 (07 2019), 36:1–12.
Eric Veach. 1998. Robust monte carlo methods for light transport simulation. Ph. D.

Dissertation. Stanford, CA, USA. Advisor(s) Guibas, Leonidas J. AAI9837162.

E. Veach and L. Guibas. 1995a. Bidirectional estimators for light transport. In Photoreal-
istic Rendering Techniques. 145–167.

E. Veach and L. Guibas. 1995b. Optimally Combining Sampling Techniques for Monte

Carlo Rendering. In Proceedings of the 22nd Annual Conference on Computer Graphics
and Interactive Techniques. 419–428.

J. Vorba, O. Karlík, M. Šik, T. Ritschel, and J. Krivanek. 2014. On-line Learning of

Parametric Mixture Models for Light Transport Simulation. ACM Trans. Graph.
(TOG) 33, 4 (07 2014), 101:1–11.

Rex West, Iliyan Georgiev, Adrien Gruson, and Toshiya Hachisuka. 2020. Continuous

Multiple Importance Sampling. ACM Trans. Graph. 39, 4, Article 136 (aug 2020),

12 pages. https://doi.org/10.1145/3386569.3392436

Rex West, Iliyan Georgiev, and Toshiya Hachisuka. 2022. Marginal Multiple Im-

portance Sampling. In SIGGRAPH Asia 2022 Conference Papers (SA ’22). Associ-
ation for Computing Machinery, New York, NY, USA, Article 42, 8 pages. https:

//doi.org/10.1145/3550469.3555388

Shanhe Wu. 2008. Some improvements of Aczél’s inequality and Popoviciu’s inequality.

Computers & Mathematics with Applications 56, 5 (2008), 1196–1205. https://doi.

org/10.1016/j.camwa.2008.02.021

M Zackary, B Benedikt, G Iliyan, and J Wojciech. 2022. Unbiased and consistent

rendering using biased estimators. ACM Trans. Graph. (TOG) 41, 4 (7 2022), 48:1–13.
Tizian Zeltner, Iliyan Georgiev, and Wenzel Jakob. 2020. Specular Manifold Sampling

for Rendering High-Frequency Caustics and Glints. Transactions on Graphics (Pro-
ceedings of SIGGRAPH) 39, 4 (July 2020). https://doi.org/10.1145/3386569.3392408

APPENDIX
We provide a detailed description of our reciprocal estimator, along

with the convergence condition, expectation, variance analysis, and

optimal settings.

A OUR ESTIMATOR
Given:

• Target function 𝑓 (𝑥) > 0

• Sample distribution 𝑝 (𝑥) 𝑠 .𝑡 . 𝑝 (𝑥) > 0𝑤ℎ𝑒𝑛 𝑓 (𝑥) > 0

• Sample 𝑋 ∼ 𝑝 (𝑥)
• RRS function 𝑟 (𝑥 |𝑧) > 0

• Constant 𝐵 > 0

Here 𝑧 refers to the precedent samples of the estimation.

We give our estimator 𝐼̃ , corresponding to 𝐼 (𝑥) in Equation 17 of

the text, that estimates
1∫

𝑅
𝑓 (𝑥 )𝑑𝑥 .

Note that the target of 𝐼̃ ′ (𝑧) is to estimate
1∫

R 𝑓 (𝑥 )𝑑𝑥 −
1

𝐵
whatever

the value of the president samples 𝑧 and 𝑧 is irrelevant to 𝑔(𝑥). It
is obvious that an optimal RRS function 𝑟∗ (𝑥 |∅) for 𝐼 ′ (∅) is also
optimal for any 𝐼 ′ (𝑧) of president samples 𝑧. Therefore, we simply

ignore the existence of 𝑧 and discuss the optimization of an RRS

function 𝑟 (𝑥) that only depends on the current sample 𝑥 in the rest

of our derivation.
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Algorithm 1 Estimator 𝐼̃

1: procedure 𝐼̃
2: return 𝐼̃ ′ (∅) + 1/𝐵
3: end procedure
4: procedure 𝐼̃ ′ (𝑧)
5: 𝑥0 ← 𝑝.𝑠𝑎𝑚𝑝𝑙𝑒 ()
6: 𝑔0 ← 1 − 𝑓 (𝑥0)/(𝐵 ∗ 𝑝 (𝑥0))
7: 𝑟0 ← 𝑟 (𝑥0 |𝑧)
8: 𝑟 ′

0
← ⌊𝑟0⌋

9: 𝑎𝑛𝑠 ← 𝑔0/𝐵
10: if 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚(0, 1).𝑠𝑎𝑚𝑝𝑙𝑒 () < 𝑟0 -𝑟 ′

0
then

11: 𝑟 ′
0
← 𝑟 ′

0
+ 1

12: end if
13: for 𝑖 = 0 to 𝑟 ′

0
do

14: 𝑎𝑛𝑠 ← 𝑎𝑛𝑠 + 𝑔 ∗ 𝐼̃ ′ (𝑧 + 𝑥0)/𝑟0
15: end for
16: return 𝑎𝑛𝑠
17: end procedure

To facilitate our derivation, we present another estimator 𝐼 corre-

sponding to 𝐼̃𝑠𝑖𝑔𝑛 in the text. This estimator is almost identical to 𝐼̃ ,

except for the different value added to 𝑎𝑛𝑠 . It’s feasible to discuss 𝐼

although our real estimator is 𝐼̃ , because:

(1) Our derivation for 𝐼 also works for 𝐼̃ with an additional ap-

proximation.

(2) 𝐼̃ is always better than 𝐼 , thus decreasing the 𝐼 ’s variance will

also decrease an upper bound for 𝐼̃ ’s variance. We will show

this in Appendix G.

In the following steps, we will first discuss the convergence con-

dition, expectation, and variance of 𝐼 , then discuss the optimal RRS

function 𝑟 (𝑥) and 𝐵. Finally, we will show 𝐼̃ is always better than 𝐼 ,

i.e., has less variance.

Algorithm 2 Estimator I

1: procedure I
2: 𝑥0 ← 𝑝.𝑠𝑎𝑚𝑝𝑙𝑒 ()
3: 𝑔0 ← 1 − 𝑓 (𝑥0)/(𝐵 ∗ 𝑝 (𝑥0))
4: 𝑟0 ← 𝑟 (𝑥)
5: 𝑟 ′

0
← ⌊𝑟0⌋

6: 𝑎𝑛𝑠 ← 1/𝐵
7: if 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚(0, 1) .𝑠𝑎𝑚𝑝𝑙𝑒 () < 𝑟0 -𝑟 ′

0
then

8: 𝑟 ′
0
← 𝑟 ′

0
+ 1

9: end if
10: for 𝑖 = 0 to 𝑟 ′

0
do

11: 𝑎𝑛𝑠 ← 𝑎𝑛𝑠 + 𝑔 ∗ 𝐼 ()/𝑟0
12: end for
13: return 𝑎𝑛𝑠
14: end procedure

B CONVERGENCE CONDITION
Let𝑔(𝑥) = 1− 𝑓 (𝑥 )

𝐵𝑝 (𝑥 ) and {𝐼𝑖 }(𝑖 ∈ N) be a sequence of independently
and identically distributed random variables with respect to 𝐼 , we

have

𝐼 =
1

𝐵
+ 𝑔(𝑋 )
𝑟 (𝑋 )

𝑟 (𝑋 )∑︁
𝑖

𝐼𝑖 . (28)

Here

𝑟∑
𝑖
𝐼𝑖 =

⌊𝑟 ⌋∑
𝑖
𝐼𝑖 + 𝐼∗, with

𝐼∗ =
{
𝐼⌈𝑟 ⌉ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟 − ⌊𝑟⌋
0 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ⌈𝑟⌉ − 𝑟

As mentioned in the text, our estimator evaluates a Taylor expan-

sion, namely

1∫
𝑅
𝑓 (𝑥)𝑑𝑥

=
1

𝐵

1

1 − 𝐸 [𝑔(𝑋 )]

=
1

𝐵
(1 + 𝐸 [𝑔(𝑋 )] + 𝐸2 [𝑔(𝑋 )] + ...) .

According to the convergence domain of the Taylor expansion, 𝐼

convergeswhen𝐸 [𝑔(𝑋 )] ∈ (−1, 1). Since𝐸 [𝑔(𝑋 )] = 1− 1

𝐵

∫
𝑅
𝑓 (𝑥)𝑑𝑥 ,

the convergence condition for 𝐼 is

1

𝐵

∫
𝑅

𝑓 (𝑥)𝑑𝑥 ∈ (0, 2) . (29)

When 𝐸 [𝑔(𝑥)] ∈ (−1, 1), 𝐸 [𝐼 ] is convergent. However, 𝐸 [𝐼2] or
𝑉 [𝐼 ] are harder to converge and need a stricter condition. We will

next prove that in order to let 𝐸 [𝐼2] converge, we at least require

𝐸 [|𝑔(𝑋 ) |] < 1 . (30)

We will prove this by contradiction. If 𝐸 [|𝑔(𝑥) |] >= 1 and 𝐸 [𝐼2]
still converges, it holds that

𝐸 [(𝐼 − 1

𝐵
)2] = 𝐸 [𝑔

2 (𝑋 )
𝑟2 (𝑋 )

𝐸 [(
𝑟 (𝑋 )∑︁

𝐼𝑖 )2]]

≥ 𝐸 [𝑔
2 (𝑋 )
𝑟2 (𝑋 )

𝑟 (𝑋 )𝐸 [𝐼2]]

= 𝐸 [𝑔
2 (𝑋 )
𝑟 (𝑋 ) ]𝐸 [𝐼

2]

≥ 𝐸 [𝑔
2 (𝑋 )
𝑟 (𝑋 ) ]𝐸 [(𝐼 −

1

𝐵
)2] .

Here 𝐸 [𝐼2] ≥ 𝐸 [(𝐼 − 1

𝐵
)2], because

𝐸 [(𝐼 − 1

𝐵
)2] − 𝐸 (𝐼2) = 1

𝐵
( 1

𝐵
− 2∫

𝑅
𝑓 (𝑥)𝑑𝑥

) ≤ 0,

which is assured by the condition (Equation 29).

Now we have

𝐸 [(𝐼 − 1

𝐵
)2] ≥ 𝐸 [𝑔

2 (𝑋 )
𝑟 (𝑋 ) ]𝐸 [(𝐼 −

1

𝐵
)2] . (31)

Since 𝐸 [|𝑔(𝑋 ) |] ≥ 1, with Cauchy’s inequality, it’s easy to prove

𝐸 [𝑔
2 (𝑋 )
𝑟 (𝑋 ) ] >

𝐸2 [|𝑔(𝑋 )] |
𝐸 [𝑟 (𝑋 )] > 1.

The equality can not hold because 𝐸 [𝑟 (𝑥)] < 1 is required for a legal

RRS function. This raises the contradiction with (Equation 31) as

𝐸 [(𝐼 − 1

𝐵
)2] > 0. Therefore, we conclude that when 𝐸 [|𝑔(𝑥) |] ≥ 1,

𝐸 [𝐼2] is not convergent, and so is 𝑉 [𝐼 ].
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C EXPECTATION
The expectation is as:

𝐸 [𝐼 ] = 1

𝐵
+ 𝐸 [𝑔(𝑋 )

𝑟 (𝑋 )

𝑟 (𝑋 )∑︁
𝑖

𝐼𝑖 ]

=
1

𝐵
+ 𝐸 [𝑔(𝑋 )]𝐸 (𝐼 )

=
1

𝐵(1 − 𝐸 [𝑔(𝑋 )])

=
1∫

𝑅
𝑓 (𝑥)𝑑𝑥

.

Therefore, we have

𝐸 [𝐼 ] = 1∫
𝑅
𝑓 (𝑥)𝑑𝑥

. (32)

D VARIANCE

Recalling previously defined

𝑟∑
𝐼𝑖 , when 𝑟 is an integer, it’s easy to

derive

𝐸 [(
𝑟∑︁
𝑖

𝐼𝑖 )2] = 𝑟𝐸 [𝐼2] + (𝑟2 − 𝑟 )𝐸2 [𝐼 ] . (33)

We adopt an approximation
2
and use this result when 𝑟 is a posi-

tive real number. With this approximation, we derive the variance

of 𝐼 :

𝑉 [𝐼 ] = 𝑉 [𝐼 − 1

𝐵
]

= 𝐸 [(𝐼 − 1

𝐵
)2] − 𝐸2 [𝐼 − 1

𝐵
]

= 𝐸 [𝑔
2 (𝑋 )
𝑟2 (𝑋 )

(
𝑟 (𝑋 )∑︁
𝑖

𝐼𝑖 )2] − (𝐸 [𝐼 ] −
1

𝐵
)2

≈ 𝐸 [𝑔
2 (𝑋 )
𝑟 (𝑋 ) (𝐸 [𝐼

2] + (𝑟 (𝑋 ) − 1)𝐸2 [𝐼 ])] − (𝐸 [𝐼 ] − 1

𝐵
)2

= 𝐸 [𝑔
2 (𝑋 )
𝑟 (𝑋 ) ]𝑉 [𝐼 ] + 𝐸 [𝑔

2 (𝑋 )]𝐸2 [𝐼 ] − (𝐸 [𝐼 ] − 1

𝐵
)2 .

Let 𝑐0 = 𝐸 [𝑔2 (𝑥)]𝐸2 [𝐼 ] − (𝐸 [𝐼 ] − 1

𝐵
)2, note that 𝑐0 is irrelevant

with 𝑟 (𝑥), then

𝑉 [𝐼 ] = 𝐸 [𝑔
2 (𝑋 )
𝑟 (𝑋 ) ]𝑉 [𝐼 ] + 𝑐0 .

Therefore, with approximation (Equation 33), we have

𝑉 [𝐼 ] = 𝑐0

1 − 𝐸 [ 𝑔
2 (𝑋 )
𝑟 (𝑋 ) ]

. (34)

E OPTIMAL FORMULATION OF R(X)
Next, we will prove that in order to achieve max efficiency, the

optimal formulation of 𝑟 (𝑥) ≡ |𝑔(𝑥) |. We first define efficiency as

the product of cost and variance, namely

𝐸𝑓 𝑓 =
1

𝐶 ×𝑉 [𝐼 ] . (35)

2
This approximation is also adopted in Rath et al. [2022b]

In a single iteration of 𝐼 , the expectation of the number of new iter-

ations is 𝐸 [𝑟 (𝑋 )]. Therefore, 𝐶 = 1

1−𝐸 [𝑟 (𝑋 ) ] , which is the expected

number of runs of I. Obviously, we need 𝐶 to be a finite positive

number, so 𝐸 [𝑟 (𝑥)] ∈ (0, 1) is required. Combining the previously

obtained variance of I, we have

𝐸𝑓 𝑓 =
1

𝑐0

(1 − 𝐸 [𝑟 (𝑋 )]) (1 − 𝐸 [𝑔
2 (𝑋 )
𝑟 (𝑋 ) ])

=
1

𝑐0

(1 −
∫
𝑅

𝑟 (𝑥)𝑝 (𝑥)𝑑𝑥) (1 −
∫
𝑅

𝑔2 (𝑥)
𝑟 (𝑥) 𝑝 (𝑥)𝑑𝑥) .

From the integral form of Aczél’s inequality
3
, we derive

𝐸𝑓 𝑓 ≤
1

𝑐0

(1 −
∫
𝑅

|𝑔(𝑥) |𝑝 (𝑥)𝑑𝑥)2 . (36)

The equality holds if and only if 𝑟 (𝑥) ≡ |𝑔(𝑥) |.
In order to achieve this optimality, 𝐸 [|𝑔(𝑋 ) |] ∈ (0, 1) is required.

This is not a restriction as we have proved in Appendix B that

𝐸 [|𝑔(𝑥) |] < 1 is required for 𝑉 [𝐼 ]’s convergence.

F OPTIMAL VALUE FOR B
We now assume 𝐸 [|𝑔(𝑋 ) |] ∈ (0, 1) and 𝑟 (𝑥) takes the optimal form

|𝑔(𝑥) |, the following discussion explores the optimal value for 𝐵.

Since 𝑟 (𝑥) ≡ |𝑔(𝑥) |, now we have

𝐸𝑓 𝑓 =
1

𝑐0

(1 −
∫
𝑅

|𝑔(𝑥) |𝑝 (𝑥)𝑑𝑥)2

=
(1 − 𝐸 [|𝑔(𝑋 ) |])2

𝐸 [𝑔2 (𝑥)]𝐸2 [𝐼 ] − (𝐸 [𝐼 ] − 1

𝐵
)2

=
(1 − 𝐸 [|𝑔(𝑋 ) |])2

𝐸 [𝑔2 (𝑋 )]𝐸2 [𝐼 ] − 𝐸2 [𝑔(𝑋 )]𝐸2 [𝐼 ]

=
(1 − 𝐸 [|𝑔(𝑋 ) |])2

𝑉 [𝑔(𝑋 )] × 1

𝐸2 [𝐼 ]
.

In the derivation above, we used a relation between 𝐸 [𝑔(𝑋 )] and
𝐸 [𝐼 ] : 𝐸 [𝑔(𝑋 )]𝐸 [𝐼 ] = 𝐸 [𝐼 ] − 1

𝐵
. It’s easy to get this relation since

𝐸 [𝑔(𝑋 )] = 1 − 1

𝐵𝐸 [𝐼 ] .

Note that 𝑔(𝑥) = 1 − 𝑓 (𝑥 )
𝐵𝑝 (𝑥 ) , therefore 𝑉 [𝑔(𝑋 )] = 𝑉 [𝑔(𝑋 ) − 1] =

1

𝐵2
𝑉 [ 𝑓 (𝑋 )

𝑝 (𝑋 ) ], thus

𝐸𝑓 𝑓 = (𝐵 − 𝐵 × 𝐸 [|𝑔(𝑋 ) |])2 × 1

𝐸2 [𝐼 ]𝑉 [ 𝑓 (𝑋 )
𝑝 (𝑋 ) ]

.

Let 𝑐1 = 1

𝐸2 [𝐼 ]𝑉 [ 𝑓 (𝑋 )
𝑝 (𝑋 ) ]

, note that 𝑐1 is irrelevant with 𝐵, then

𝐸𝑓 𝑓 = 𝑐1 (𝐵 −
∫
𝑅

|𝐵 − 𝑓 (𝑥)
𝑝 (𝑥) |𝑝 (𝑥)𝑑𝑥)

2

= 𝑐1 (
∫
𝑅

(𝐵 − |𝐵 − 𝑓 (𝑥)
𝑝 (𝑥) ) |𝑝 (𝑥)𝑑𝑥)

2

≤ 𝑐1 (
∫
𝑅

𝑓 (𝑥)𝑑𝑥)2 .

3
The Aczél’s inequality states that if 𝑎𝑖 , 𝑏𝑖 (𝑖 = 1, 2, ..., 𝑛) are positive numbers such

that 𝑎2

1
−

𝑛∑
𝑖=2

𝑎2

𝑖 > 0 or 𝑏2

1
−

𝑛∑
𝑖=2

𝑏2

𝑖 > 0, then (𝑎2

1
−

𝑛∑
𝑖=2

𝑎2

𝑖 ) (𝑏2

1
−

𝑛∑
𝑖=2

𝑏2

𝑖 ) ≤ (𝑎1𝑏1 −
𝑛∑
𝑖=2

𝑎𝑖𝑏𝑖 )2 . The equality holds only if
𝑎𝑖
𝑏𝑖

=
𝑎

1

𝑏
1

for any 𝑖 . More details in Wu [2008].
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The equality condition is 𝐵 ≥ 𝑚𝑎𝑥{ 𝑓 (𝑥 )
𝑝 (𝑥 ) }. We assume 𝑝 (𝑥) to be

a feasible sampling distribution for 𝑓 (𝑥), i.e.𝑚𝑎𝑥{ 𝑓 (𝑥 )
𝑝 (𝑥 ) } < +∞ so

the equality condition can be achieved.

As 𝐵 becomes greater than𝑚𝑎𝑥{ 𝑓 (𝑥 )
𝑝 (𝑥 ) }, the efficiency remains

constant. However, this conclusion was derived under approxima-

tion (Equation 33). When we assume 𝐵 ≥ 𝑚𝑎𝑥{ 𝑓 (𝑥 )
𝑝 (𝑥 ) }, 𝐼 degenerates

into a simple form that is similar to the geometric distribution, and

the computation of𝑉 [𝐼 ] no longer needs approximation. We review

our derivation under this context.

With 𝐵 ≥ 𝑚𝑎𝑥{ 𝑓 (𝑥 )
𝑝 (𝑥 ) }, 𝑔(𝑥) = 1 − 𝑓 (𝑥 )

𝐵𝑝 (𝑥 ) ∈ (0, 1), 𝐼 degenerates
into a simple form:

𝐼 =
1

𝐵
+
{
𝐼 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑔(𝑋 )
0 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑔(𝑋 )

Let 𝑞 =
∫
𝑅
𝑔(𝑥)𝑝 (𝑥)𝑑𝑥 , which assembles the continue probability in

geometric distribution, then

𝐶 =
1

1 − 𝑞 , 𝑉 [𝐼 ] =
𝑞

(𝐵 − 𝐵𝑞)2
=

𝑞

𝐸2 [𝐼 ]
.

We have

𝐸𝑓 𝑓 =
1

𝐶 ×𝑉 [𝐼 ] = (
1

𝑞
− 1)𝐸2 [𝐼 ] .

Therefore, as 𝑞 decreases, the efficiency increases. However, 𝑞

is a monotonically increasing function of 𝐵. Taking into account

the condition 𝐵 ≥ max{ 𝑓 (𝑥 )
𝑝 (𝑥 ) }, we consider 𝐵 = max{ 𝑓 (𝑥 )

𝑝 (𝑥 ) } as the
optimal value.

G COMPARISON BETWEEN 𝐼 AND 𝐼̃

While we have been using 𝐼 for the proof previously, our derivation

also apply to 𝐼̃ using an additional approximation, namely

𝑉 [𝐼̃ ] = 𝑉 [𝑔(𝑋 )
𝐵
+ 𝑔(𝑋 )
𝑟 (𝑋 )

𝑟 (𝑥 )∑︁
𝐼̃𝑖 ]

≈ 𝑉 [𝑔(𝑋 )
𝐵
] +𝑉 [𝑔(𝑋 )

𝑟 (𝑋 )

𝑟 (𝑥 )∑︁
𝐼̃𝑖 ] .

which assumes the first part and the second part in RHS is irrelevant.

With this approximation, the previous conclusion 𝑟 (𝑥) ≡ 𝑔(𝑥) and
𝐵 ≥ 𝑚𝑎𝑥{ 𝑓 (𝑥 )

𝑝 (𝑥 ) } still holds true, but the last part in Appendix F that

removes approximation (Equation 33) can not be easily applied to 𝐼̃ ,

as 𝑉 [𝐼̃ ] becomes a complex function of 𝐵 and simple monotonicity

analysis is no longer feasible. But we will prove 𝐵 =𝑚𝑎𝑥{ 𝑓 (𝑥 )
𝑝 (𝑥 ) } is

still sub-optimal for 𝐼̃ in the end.

We first show 𝐼̃ ’s variance is less than 𝐼 . Recall that

𝐼 =
1

𝐵
+ 𝑔(𝑋 )
𝑟 (𝑋 )

𝑟 (𝑋 )∑︁
𝑖

𝐼𝑖

and

𝐼 ′ =
𝑔(𝑋 )
𝐵
+ 𝑔(𝑋 )
𝑟 (𝑋 )

𝑟 (𝑋 )∑︁
𝑖

𝐼 ′
𝑖
.

Let 𝐼 ′ = 𝐼 − 1

𝐵
, we have

𝐼 ′ =
𝑔(𝑋 )
𝑟 (𝑋 )

𝑟 (𝑋 )∑︁
𝑖

(𝐼 ′𝑖 +
1

𝐵
) .

Note that 𝑉 [𝐼 ] = 𝑉 [𝐼 ′] and 𝑉 [𝐼̃ ] = 𝑉 [𝐼 ′], so we can just compare

𝑉 [𝐼 ′] and 𝑉 [𝐼 ′]. In addition, with 𝐸 [𝐼 ′] = 𝐸 [𝐼 ′] = 1∫
𝑅
𝑓 (𝑥 )𝑑𝑥 −

1

𝐵
,

the comparison between 𝑉 [𝐼 ] and 𝑉 [𝐼̃ ] eventually turns into the

comparison between 𝐸 [𝐼 ′2] and 𝐸 [𝐼 ′2]:
For 𝐼 ,

𝐸 [𝐼 ′2] = 𝐸 [𝑔
2 (𝑋 )
𝑟2 (𝑋 )

( 𝑟 (𝑋 )
𝐵
+
𝑟 (𝑋 )∑︁
𝑖

𝐼̃𝑖 )2]

and for 𝐼 ′,

𝐸 [𝐼 ′2] = 𝐸 [𝑔
2 (𝑋 )
𝑟2 (𝑋 )

(
𝑟 (𝑋 )∑︁
𝑖

(𝐼𝑖 +
1

𝐵
))2]

= 𝐸 [𝑔
2 (𝑋 )
𝑟2 (𝑋 )

( ⌊𝑟 (𝑋 )⌋
𝐵

+
�𝑟 (𝑋 )
𝐵
+
𝑟 (𝑋 )∑︁
𝑖

𝐼𝑖 )2]

where

𝑟̃ =

{
1 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟 − ⌊𝑟⌋
0 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ⌈𝑟⌉ − 𝑟

Let 𝑍 ′ = 𝑟
𝐵
+

𝑟∑
𝑖
𝐼̃𝑖 and 𝑍

′ = ⌊𝑟 ⌋
𝐵
+ 𝑟̃

𝐵
+

𝑟∑
𝑖
𝐼𝑖 . When 𝑟 is an integer,

𝐸 [𝑍 ′2] = 𝐸 [𝑍 ′2]. Otherwise, �𝑟 (𝑋 ) ≠ 0, we can prove 𝐸 [𝑍 ′2] <
𝐸 [𝑍 ′2], and 𝐸 [𝐼 ′2] < 𝐸 [𝐼 ′2]. Therefore, we eventually prove𝑉 [𝐼̃ ] ≤
𝑉 [𝐼 ], which means 𝐼̃ is a better estimator.

As we have derived in Appendix F, 𝐵 = 𝑚𝑎𝑥{ 𝑓 (𝑥 )
𝑝 (𝑥 ) } is optimal

for 𝐼 . Although we only attain 𝐵 ≥ 𝑚𝑎𝑥{ 𝑓 (𝑥 )
𝑝 (𝑥 ) } for 𝐼̃ , since 𝑉 [𝐼 ] is

an upper bound for 𝑉 [𝐼̃ ], 𝐵 = 𝑚𝑎𝑥{ 𝑓 (𝑥 )
𝑝 (𝑥 ) } can still be considered

sub-optimal for 𝐼̃ .
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